Partager

Publications

Publications

2022 | 2021 | 2020 | 2019

Sont listées ci-dessous, par année, les publications figurant dans l'archive ouverte HAL.

2024

  • Simulation and Characterization of Capacitively-Coupled Argon Plasma at Intermediate Pressure
    • Sahu Rupali
    • Nuwal Nakul
    • Bera Kallol
    • Rauf Shahid
    • Booth Jean-Paul
    • Zhang Shu
    • Curley Garrett
    , 2024. Radiofrequency (RF) capacitively-couple plasmas (CCP) at intermediate pressure (a few Torr) are widely used in the semiconductor industry. However, the plasma behavior in this pressure regime is not well characterized. Argon plasma physics is investigated using a one-dimensional fluid-MCS hybrid plasma model in this pressure regime, and compared with experimental data. Owing to the simple chemistry of Argon plasma, validated results in this study can provide insights into plasma physics at intermediate pressures. Our model includes continuity equations for charged and neutral species, drift-diffusion approximation for electron flux, the momentum conservation equation for ions, energy conservation for electrons, and the Poisson equation for electric potential. While a fluid model is valid for bulk species in this pressure regime, secondary electrons emitted from the surface can exhibit kinetic behavior as they accelerate through the sheath. Therefore, a Monte Carlo model is used for secondary electron collisions to compute production rates of species, which are coupled to the fluid plasma model. The voltage-current characteristics of the plasma model are compared with the electrical measurements in a symmetric CCP chamber for model validation. Electron energy distribution function (EEDF) and the gas temperature are varied in the model to achieve good agreement between the simulations and experiments. The plasma simulations are performed at different pressures and powers. Validated results show that the EEDF transitions from a Maxwellian distribution at lower pressures of 1 Torr, to a Druyvesteyn distribution at higher pressures. It is also seen that at pressures of around 8 Torr, ionization source is concentrated in the presheath region, decaying exponentially in the bulk. At low pressures, the secondary electrons from the electrodes penetrate into the bulk plasma enhancing ionization in that region. The gas temperature is assumed to be uniform and increases from 350K to 600K as the pressure increases from 1 to 8 Torr, while the bulk electron temperature decreases. Our simulation results compare well with the experimental trends that can be useful in CCP based semiconductor processing.
  • Turbulence and Heating in Collisionless Astrophysical Plasmas
    • Manzini Davide
    , 2024. Plasma is often cited as the most abundant form of baryonic matter in the universe. This is reasonable considering that the atmospheres and interiors of stars, gaseous nebulae, and much of the interstellar medium exist in a plasma state. In our own neighborhood, as we move beyond Earth's atmosphere, we encounter various plasma regions such as the ionosphere, the Van Allen radiation belts, the magnetosheath, and the solar wind.A notable feature of astrophysical plasmas is their collisionless nature, where the particles' mean free path is several orders of magnitude larger than the scales of the dynamics. A direct consequence is that the plasma is always far from local thermodynamic equilibrium: the distribution function can be far from Maxwellian, and different species, such as protons and electrons, can have distinct temperatures. For instance, in near-Earth space, specifically in the Earth's magnetosheath, protons are generally found to be hotter than electrons by a factor of eight, a situation that would be impossible in a collisional medium where interparticle collisions would quickly lead to thermal equilibrium. Understanding the heating mechanisms and computing the heating rates in these media is a major challenge.Moreover, astrophysical plasmas are typically turbulent. In such environments, energy injected at large scales cascades down to smaller scales through nonlinear interactions. This process is particularly important for plasma heating, as it efficiently transports energy from large scales, where most of the energy lies, to small scales where kinetic processes occur and can heat the plasma. Measuring the energy cascade rate, the amount of energy per unit time cascading to smaller scales, provides an estimate of the heating rate.In this thesis, we adopt a novel approach, the coarse graining method, to measure the cascade and heating rates. We show that this method is more reliable than the traditionally employed “third-order laws” and proceed to apply it to in-situ data measured by NASA's MMS mission.First, we discuss the role of magnetic reconnection, a process that converts, often explosively, stored magnetic energy into particles' kinetic energy (acceleration and/or heating) and enables a reconfiguration of the magnetic topology. We demonstrate that it can drive intense energy transfer at subion scales, highlighting its relevance for plasma dynamics at small scales.We then proceed to show, using data from the Earth's magnetosheath, that as energy cascades to smaller scales, it is eventually dissipated and heats the plasma via the pressure-strain interaction. By investigating the scales at which the plasma is heated, we reveal, on a statistical dataset, that protons are predominantly heated at ion scales. For electrons, we show that a significant fraction of their heating can occur at scales comparable to the ion Larmor radius, contrary to the long-held belief that electrons are only heated at electron scales.Finally, we discuss how turbulence partitions the energy between protons and electrons, showing that Alfvénic turbulence preferentially heats protons at large beta. This result has profound implications for distant astrophysical objects and can potentially explain why the accretion disk around the black hole at the center of our Galaxy, SgrA*, is so dim and radiatively inefficient.
  • WEST full tungsten operation with an ITER grade divertor
    • Bucalossi J.
    • Ekedahl A.
    • Achard J.
    • Afonin K.
    • Agullo O.
    • Alarcon T.
    • Allegretti L.
    • Almuhisen F.
    • Ancher H.
    • Antar G.
    • Anquetin Y.
    • Antusch S.
    • Anzallo V.
    • Arnas C.
    • Artaud J.F.
    • Aumeunier M.H.
    • Baek S.G.
    • Bai X.Y.
    • Balden M.
    • Balorin C.
    • Barbui T.
    • Barbuti A.
    • Barlerin J.
    • Barra J.
    • Basiuk V.
    • Batal T.
    • Baulaigue O.
    • Bec A.
    • Becoulet M.
    • Benoit E.
    • Bernard E.
    • Bernard J.M.
    • Bernert M.
    • Bertelli N.
    • Bertrand E.
    • Beyer P.
    • Bielecki J.
    • Bienvenu P.
    • Bisson R.
    • Bliewert B.
    • Bodner G.
    • Bose S.
    • Bottereau C.
    • Bouchand C.
    • Boumendjel Y.
    • Bouquey F.
    • Bourdelle C.
    • Bourg J.
    • Brezinsek S.
    • Brochard F.
    • Brun C.
    • Bruno V.
    • Bufferand H.
    • Bureau A.
    • Burles S.
    • Camenen Y.
    • Cantone B.
    • Caprin E.
    • Carole M.
    • Carpentier-Chouchana S.
    • Caulier G.
    • Causa F.
    • Cazanave N.
    • Chanet N.
    • Chellai O.
    • Chen Y.
    • Chernyshova M.
    • Chmielewski P.
    • Choe W.
    • Chomiczewska A.
    • Ciraolo G.
    • Clairet F.
    • Coenen J.
    • Colas L.
    • Colledani G.
    • Colnel J.
    • Coquillat P.
    • Corbel E.
    • Corre Y.
    • Courtois X.
    • Czarski T.
    • da Ros A.
    • Daniel R.
    • Daumas J.
    • de Combarieu M.
    • de Vries P.
    • Dechelle C.
    • Deguara F.
    • Dejarnac R.
    • Delaplanche J.M.
    • Delgado-Aparicio L.F.
    • Delmas E.
    • Delpech L.
    • Desgranges C.
    • Devynck P.
    • Denis J.
    • Di Genova S.
    • Diab R.
    • Diallo A.
    • Diez M.
    • Dif-Pradalier G.
    • Dimitrova M.
    • Ding R.
    • Dittmar T.
    • Doceul L.
    • Domenes M.
    • Donovan D.
    • Douai D.
    • Dubus L.
    • Dumas N.
    • Dumont R.
    • Durand F.
    • Durif A.
    • Durodié F.
    • Elbeze D.
    • Ertmer S.
    • Escarguel A.
    • Escourbiac F.
    • Esposito B.
    • Ezato K.
    • Faisse F.
    • Farjon J.L.
    • Faure N.
    • Fedorczak N.
    • Fejoz P.
    • Felici F.
    • Fenzi-Bonizec C.
    • Ferlay F.
    • Ferrand L.
    • Fevre L.
    • Firdaouss M.
    • Fleury L.
    • Flouquet D.
    • Fonghetti T.
    • Gallo A.
    • Garbet X.
    • Garcia J.
    • Gardarein J.L.
    • Gargiulo L.
    • Garibaldi P.
    • Garitta S.
    • Gaspar J.
    • Gauthier E.
    • Gazzotti S.
    • Gely F.
    • Gerardin J.
    • Gervasini G.
    • Geulin E.
    • Geynet M.
    • Ghendrih P.
    • Giacalone I.
    • Gil C.
    • Ginoux S.
    • Girard S.
    • Giroux E.
    • Giruzzi G.
    • Goniche M.
    • Gorse V.
    • Gray T.
    • Grelier E.
    • Grisolia C.
    • Grosjean A.
    • Grosman A.
    • Grover O.
    • Guibert D.
    • Guilhem D.
    • Guillemaut C.
    • Guillermin B.
    • Guirlet R.
    • Gunn J.P.
    • Gunsu Y.
    • Gyergyek T.
    • Hacquin S.
    • Hakola A.
    • Harris J.
    • Hatchressian J.C.
    • Helou W.
    • Hennequin P.
    • Hernandez C.
    • Hijazi L.
    • Hillairet J.
    • Hirai T.
    • Hoang G.T.
    • Honoré C.
    • Houry M.
    • Huart A.
    • Huijsmans G.
    • Huynh P.
    • Iafrati M.
    • Imbeaux F.
    • Imbert N.
    • Ivanova-Stanik I.
    • Ivanova P.
    • Jalageas R.
    • Jamann A.
    • Jammes C.
    • Jardin A.
    • Jaubert L.
    • Jiolat G.
    • Joffrin E.
    • Johnson C.
    • Jonas A.
    • Kirschner A.
    • Klepper C.C.
    • Komm M.
    • Koubiti M.
    • Kosslow S.
    • Kovacic J.
    • Kozeiha M.
    • Krieger K.
    • Krol K.
    • Kudashev I.
    • Lacroix B.
    • Laguardia L.
    • Lamaison V.
    • Lapleigne V.
    • Laqua H.
    • Lau C.
    • Lausenaz Y.
    • Lé R.
    • Le Bohec M.
    • Lefèvre Nicolas
    • Lemoine Nicolas
    • Lerche E.
    • Lesourd Y.
    • Letellier L.
    • Lewerentz M.
    • Li Y.
    • Liang A.
    • Linczuk P.
    • Linsmeier C.
    • Lipa M.
    • Litaudon X.
    • Liu X.
    • Llorens J.
    • Loarer T.
    • Loarte A.
    • Loewenhoff T.
    • Lombard G.
    • Lore J.
    • Lorenzetto P.
    • Lu B.
    • Lumsdaine A.
    • Lunsford R.
    • Lunt T.
    • Luo G.
    • Magaud P.
    • Maget P.
    • Mahieu J.F.
    • Maini P.
    • Malard P.
    • Malinowski K.
    • Manas P.
    • Manenc L.
    • Maquet V.
    • Marandet Y.
    • Martin C.
    • Martin E.J.
    • Martino P.
    • Mayer M.
    • Mazon D.
    • Mazzi S.
    • Messina P.
    • Meunier L.
    • Midou D.
    • Miglionico G.
    • Mineo Y.
    • Missirlian M.
    • Mitteau R.
    • Mitu B.
    • Moiraf D.
    • Mollard P.
    • Momparler G.
    • Moncada V.
    • Mondiere T.
    • Monti C.
    • Morales J.
    • Moreau M.
    • Moreau Ph.
    • Moudden Y.
    • Moureau G.
    • Mouyon D.
    • Muraglia M.
    • Nakano T.
    • Nardon E.
    • Neff A.
    • Nespoli F.
    • Nichols J.
    • Nicolas L.
    • Nicollet S.
    • Nouailletas R.
    • Ono M.
    • Ostuni V.
    • Paillat O.
    • Parish C.
    • Park H.
    • Parrat H.
    • Pascal J.Y.
    • Pegourie B.
    • Pellissier F.P.
    • Peneliau Y.
    • Peret M.
    • Pignoly E.
    • Pintsuk G.
    • Pitts R.
    • Pocheau C.
    • Podolnik A.
    • Portafaix C.
    • Poulos M.
    • Prochet P.
    • Puig Sitjes A.
    • Ragona R.
    • Rasinski M.
    • Ratynskaia S.
    • Raup G.
    • Regal-Mezin X.
    • Reux C.
    • Rice J.
    • Richou M.
    • Rigollet F.
    • Rivals N.
    • Roche H.
    • Rodrigues S.
    • Romazanov J.
    • Ronchi G.
    • Ruset C.
    • Sabot R.
    • Saille A.
    • Sakamoto R.
    • Salamon B.
    • Samaille F.
    • Santagiustina A.
    • Santraine B.
    • Sarazin Y.
    • Sauter O.
    • Savoie-Peysson Y.
    • Schiesko L.
    • Scholz M.
    • Schwob J.L.
    • Serre E.
    • Shin H.
    • Shiraiwa S.
    • Signoret Ja.
    • Skalli-Fettachi O.
    • Sogorb P.
    • Song Y.
    • Spring A.
    • Spuig P.
    • Sridhar S.
    • Stratton B.
    • Talatizi C.
    • Tamain P.
    • Tatali R.
    • Tichit Q.
    • Torre A.
    • Toulouse L.
    • Treutterer W.
    • Tsitrone E.
    • Unterberg E.A.
    • Urbanczyk Guillaume
    • van Rooij G.
    • Varadarajan N.
    • Vartanian S.
    • Velly E.
    • Verger J.M.
    • Vermare L.
    • Vezinet D.
    • Vignal N.
    • Vincent B.
    • Vives S.
    • Volpe D.
    • Wallace G.
    • Wang E.
    • Wang L.
    • Wang Y.
    • Wang Y.S.
    • Wauters T.
    • Weldon D.
    • Wirth B.
    • Wirtz M.
    • Wojenski A.
    • Xu M.
    • Yang Q.X.
    • Yang H.
    • Zago B.
    • Zagorski R.
    • Zhang B.
    • Zhang X.J.
    • Zou X.L.
    Nuclear Fusion, IOP Publishing, 2024, 64 (11), pp.112022. The mission of WEST (tungsten-W Environment in Steady-state Tokamak) is to explore long pulse operation in a full tungsten (W) environment for preparing next-step fusion devices (ITER and DEMO) with a focus on testing the ITER actively cooled W divertor in tokamak conditions. Following the successful completion of phase 1 (2016-2021), phase 2 started in December 2022 with the lower divertor made entirely of actively cooled ITER-grade tungsten mono-blocks. A boronization prior the first plasma attempt allowed for a smooth startup with the new divertor. Despite the reduced operating window due to tungsten, rapid progress has been made in long pulse operation, resulting in discharges with a pulse length of 100 s and an injected energy of around 300 MJ per discharge. Plasma startup studies were carried out with equatorial boron nitride limiters to compare them with tungsten limiters, while Ion Cyclotron Resonance Heating assisted startup was attempted. High fluence operation in attached regime, which was the main thrust of the first campaigns, already showed the progressive build up of deposits and appearance of dust, impacting the plasma operation as the plasma fluence increased. In total, the cumulated injected energy during the first campaigns reached 43 GJ and the cumulated plasma time exceeded 5 h. Demonstration of controlled X-Point Radiator regime is also reported, opening a promising route for investigating plasma exhaust and plasma-wall interaction issues in more detached regime. This paper summarises the lessons learned from the manufacturing and the first operation of the ITER-grade divertor, describing the progress achieved in optimising operation in a full W environment with a focus on long pulse operation and plasma wall interaction. (10.1088/1741-4326/ad64e5)
    DOI : 10.1088/1741-4326/ad64e5
  • Surface Charging of the Jupiter Icy Moons Explorer (JUICE) Spacecraft in the Solar Wind at 1 AU
    • Holmberg M.
    • Jackman C.
    • Taylor M.
    • Witasse O.
    • Wahlund J.‐e.
    • Barabash S.
    • Michotte de Welle B.
    • Huybrighs H.
    • Imhof C.
    • Cipriani F.
    • Déprez G.
    • Altobelli N.
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2024, 129 (9). Abstract This article presents the first study of the interaction between the Jupiter Icy Moons Explorer (JUICE) spacecraft and the solar wind environment at 1 AU. The state‐of‐the‐art software Spacecraft Plasma Interaction Software was used to simulate the surface charging of the spacecraft and the altered particle environment around the spacecraft. The simulations show that for a typical solar wind environment the spacecraft will charge to around 6 V, with the different dielectric parts of the spacecraft charging to potentials from around −36 to 8 V. For the studied extreme solar wind environment, similar to the environment found in the sheath region inside the shock front of an Interplanetary Coronal Mass Ejection, the surface potential of the spacecraft is lower due to the increased accumulation of electrons. The spacecraft will charge to around 3 V, with the different dielectric surfaces charging from around −45 to 9 V. We also show how the interaction between the spacecraft and its environment alters the ion and electron particle environment around the spacecraft. This study is the first step toward developing correction techniques for the impact that the interaction between the JUICE spacecraft and its environment has on the JUICE charged particle and field measurements. (10.1029/2023ja032137)
    DOI : 10.1029/2023ja032137
  • The Magnetopause : a quasi-tangential interface between the magnetosphere and the magnetosheath
    • Ballerini Giulio
    , 2024. This thesis aims to study the Earth's magnetopause, defined as the boundary between the Earth's magnetosphere and the solar wind. Although considered in first approximation as a clear barrier between the two plasmas, the reality is more complex, as the solar wind plasma and the magnetosphere plasma mix with each other in the magnetopause in ways not yet fully understood. One example of this interaction is magnetic reconnection, which creates a flow of mass and magnetic field between the two media.In this thesis, we focus on regions of the magnetopause away from areas of magnetic reconnection. In these regions, which make up most of the structure, the magnetopause often takes on a one-dimensional, stationary structure and is generally modeled as a discontinuity through the Classic Theory of Discontinuities (CTD). However, in situ data from recent space missions show how this theory does not adequately describe the magnetopause. In fact, at the magnetopause, both a rotation of the magnetic field in the plane tangent to the structure and compressive characteristics are observed. In order to describe these properties simultaneously, the magnetopause is described in CTD as a tangential discontinuity. However, this classification is a singularity in the theory that requires the normal component of the magnetic field to the structure to be zero. Instead, we observe from the data that this component is small but not zero, emphasizing the need to introduce a "quasi-tangential" description in order to describe the magnetopause.In this thesis, therefore, the CTD is used as a starting point, exploiting its limitations in describing the magnetopause, in order to determine which terms are relevant in its equilibrium. To this end, we use in situ measurements from the Magnetospheric Multiscale Mission (MMS, NASA). The first part of the work aimed to develop an instrument, called GF2, that estimates the direction of the normal to the magnetopause more accurately than current instruments. Indeed, accurate estimation of the normal is of fundamental importance in order to determine which experimentally relevant terms are not included in the classical theory. This instrument was tested both on the MMS mission data, analyzing in detail a December 28, 2015 magnetopause crossing, and through a numerical simulation obtained through the hybrid-PIC code Menura, demonstrating good skill in determining the normal.The same magnetopause crossing of MMS was also used to study the magnetopause equilibrium in detail. In particular, taking advantage of the normal obtained through the previously developed instrument, we show that the divergence of the pressure tensor plays a key role in this equilibrium, unlike the assumption in CTD. Specifically, we show that the effects of finite Larmor radius (FLR) play an important role in the quasi-tangential discontinuity when the Larmor radius of the ions is not completely negligible with respect to the thickness of the magnetopause. To generalize the result, a similar statistical study was also conducted on a database of MMS magnetopause crossings, which confirmed that these results are common in the magnetopause. Finally, one part of the project focused on Mercury's magnetosphere, deviating slightly from the main objective of this thesis. In this analysis, full-kinetic simulations were used in order to analyze the generation of whistler waves in the reconnection region in the magnetotail. In this study, the small size of Mercury's magnetosphere compared with that of Earth is exploited in order to learn new insights about Earth's magnetosphere.
  • Global Compression of the Plasma Sheet and Magnetotail During Intense Storms From THEMIS Observations
    • Alqeeq S.
    • Fontaine D.
    • Le Contel O.
    • Akhavan Tafti M.
    • Cazzola E.
    • Atilaw T.
    • Angelopoulos V.
    • Auster H.
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2024, 129 (9). Abstract We estimate the global impact of storms on the global structure and dynamics of the night side plasma sheet from observations by the NASA mission Time History of Events and Macroscale Interactions during Substorms (THEMIS). We focus on an intense storm occurring in December 2015 triggered by interplanetary coronal mass ejections (ICMEs). It starts with a storm sudden commencement (SSC) phase (SYM‐H +50 nT) followed by a growth phase (SYM‐H −188 nT at the minimum) and then a long recovery phase lasting several days. We investigate THEMIS observations when the spacecraft were located in the midnight sector of the plasma sheet at distances typically between 8 and 13 Earth's radii. It is found that the plasma sheet has been globally compressed up to a value of about 4 nPa during the SSC and main phases, that is, 8 times larger than its value during the quiet phase before the event. This compression occurs during periods of high dynamic pressure in the ICME (20 nPa) about one order of magnitude larger than its value in the pristine solar wind. We infer a global increase of the lobe magnetic field from 30 to 100 nT, confirmed by THEMIS data just outside the plasma sheet. During the SSC and main phases, the plasma sheet is found thinner by a factor of 2 relative to its thickness at quiet times, while the Tsyganenko T96 magnetic field model shows very stretched magnetic field lines from inner magnetospheric regions toward the night side. During the recovery phase, whereas the interplanetary pressure has dropped off, the plasma sheet tends to gradually recover its quiet phase characteristics (pressure, thickness, magnetic configuration, etc.) during a long recovery phase of several days. (10.1029/2024JA032888)
    DOI : 10.1029/2024JA032888
  • Cold plasma endoscopy: investigating intrabody fluid issue for bile duct cancer local treatment
    • Géraud Korentin
    • Soulier Manon
    • Camus Marine
    • Pavy Allan
    • Fouassier Laura
    • Dufour Thierry
    , 2024.
  • The impact of cold piezoelectric plasma on cancer cell viability: a study on cholangiocarcinoma
    • Soulier Manon
    • Lekbaby Bouchra
    • Houari Imane
    • Decauchy Henri
    • Pavy Allan
    • Coumes Alexia
    • Fouassier Laura
    • Dufour Thierry
    , 2024.
  • Overview of the EUROfusion Tokamak Exploitation programme in support of ITER and DEMO
    • Joffrin E.
    • Wischmeier M.
    • Baruzzo M.
    • Hakola A.
    • Kappatou A.
    • Keeling D.
    • Labit B.
    • Tsitrone E.
    • Vianello N.
    • Abate D.
    • Adamek J.
    • Agostini M.
    • Albert C.
    • Albert Devasagayam F.C.P.
    • Aleiferis S.
    • Alessi E.
    • Alhage J.
    • Allan S.
    • Allcock J.
    • Alonzo M.
    • Anastasiou G.
    • Andersson Sunden E.
    • Angioni C.
    • Anquetin Y.
    • Appel L.
    • Apruzzese G.M.
    • Ariola M.
    • Arnas C.
    • Artaud J.F.
    • Arter W.
    • Asztalos O.
    • Aucone L.
    • Aumeunier M.H.
    • Auriemma F.
    • Ayllon J.
    • Aymerich E.
    • Baciero A.
    • Bagnato F.
    • Bähner L.
    • Bairaktaris F.
    • Balázs P.
    • Balbinot L.
    • Balboa I.
    • Balden M.
    • Balestri A.
    • Baquero Ruiz M.
    • Barberis T.
    • Barcellona C.
    • Bardsley O.
    • Baruzzo M.
    • Benkadda S.
    • Bensadon T.
    • Bernard E.
    • Bernert M.
    • Betar H.
    • Bianchetti Morales R.
    • Bielecki J.
    • Bilato R.
    • Bilkova P.
    • Bin W.
    • Birkenmeier G.
    • Bisson R.
    • Blanchard P.
    • Bleasdale A.
    • Bobkov V.
    • Boboc A.
    • Bock A.
    • Bogar K.
    • Bohm P.
    • Bolzonella T.
    • Bombarda F.
    • Bonanomi N.
    • Boncagni L.
    • Bonfiglio D.
    • Bonifetto R.
    • Bonotto M.
    • Borodin D.
    • Borodkina I.
    • Bosman T.O.S.J.
    • Bourdelle C.
    • Bowman C.
    • Brezinsek S.
    • Brida D.
    • Brochard F.
    • Brunet R.
    • Brunetti D.
    • Bruno V.
    • Buchholz R.
    • Buermans J.
    • Bufferand H.
    • Buratti P.
    • Burckhart A.
    • Cai J.
    • Calado R.
    • Caloud J.
    • Cancelli S.
    • Cani F.
    • Cannas B.
    • Cappelli M.
    • Carcangiu S.
    • Cardinali A.
    • Carli S.
    • Carnevale D.
    • Carole M.
    • Carpita M.
    • Carralero D.
    • Caruggi F.
    • Carvalho I.S.
    • Casiraghi I.
    • Casolari A.
    • Casson F.J.
    • Castaldo C.
    • Cathey A.
    • Causa F.
    • Cavalier J.
    • Cavedon M.
    • Cazabonne J.
    • Cecconello M.
    • Ceelen L.
    • Celora A.
    • Cerovsky J.
    • Challis C.D.
    • Chandra R.
    • Chankin A.
    • Chapman B.
    • Chen H.
    • Chernyshova M.
    • Chiariello A.G.
    • Chmielewski P.
    • Chomiczewska A.
    • Cianfarani C.
    • Ciraolo G.
    • Citrin J.
    • Clairet F.
    • Coda S.
    • Coelho R.
    • Coenen J.W.
    • Coffey I.H.
    • Colandrea C.
    • Colas L.
    • Conroy S.
    • Contre C.
    • Conway N.J.
    • Cordaro L.
    • Corre Y.
    • Costa D.
    • Costea S.
    • Coster D.
    • Courtois X.
    • Cowley C.
    • Craciunescu T.
    • Croci G.
    • Croitoru A.M.
    • Crombe K.
    • Cruz Zabala D.J.
    • Cseh G.
    • Czarski T.
    • da Ros A.
    • Dal Molin A.
    • Dalla Rosa M.
    • Damizia Y.
    • D’arcangelo O.
    • David P.
    • de Angeli M.
    • de la Cal E.
    • de la Luna E.
    • de Tommasi G.
    • Decker J.
    • Dejarnac R.
    • Daniele del Sarto
    • Derks G.
    • Desgranges C.
    • Devynck P.
    • Di Genova S.
    • Di Grazia L.E.
    • Di Siena A.
    • Dicorato M.
    • Diez M.
    • Dimitrova M.
    • Dittmar T.
    • Dittrich L.
    • Domínguez Palacios Durán J.J.
    • Donnel P.
    • Douai D.
    • Dowson S.
    • Doyle S.
    • Dreval M.
    • Drews P.
    • Dubus L.
    • Dumont R.
    • Dunai D.
    • Dunne M.
    • Durif A.
    • Durodie F.
    • Durr Legoupil Nicoud G.
    • Duval B.
    • Dux R.
    • Eich T.
    • Ekedahl A.
    • Elmore S.
    • Ericsson G.
    • Eriksson J.
    • Eriksson B.
    • Eriksson F.
    • Ertmer S.
    • Escarguel A.
    • Esposito B.
    • Estrada T.
    • Fable E.
    • Faitsch M.
    • Fakhrayi Mofrad N.
    • Fanni A.
    • Farley T.
    • Farník M.
    • Fedorczak N.
    • Felici F.
    • Feng X.
    • Ferreira J.
    • Ferreira D.
    • Ferron N.
    • Fevrier O.
    • Ficker O.
    • Field A.R.
    • Figueiredo A.
    • Fil N.
    • Fiorucci D.
    • Firdaouss M.
    • Fischer R.
    • Fitzgerald M.
    • Flebbe M.
    • Fontana M.
    • Fontdecaba Climent J.
    • Frank A.
    • Fransson E.
    • Frassinetti L.
    • Frigione D.
    • Futatani S.
    • Futtersack R.
    • Gabriellini S.
    • Gadariya D.
    • Galassi D.
    • Galazka K.
    • Galdon J.
    • Galeani S.
    • Gallart D.
    • Gallo A.
    • Galperti C.
    • Gambrioli M.
    • Garavaglia S.
    • Garcia J.
    • Garcia Munoz M.
    • Gardarein J.
    • Garzotti L.
    • Gaspar J.
    • Gatto R.
    • Gaudio P.
    • Gelfusa M.
    • Gerardin J.
    • Gerasimov S.N.
    • Gerru Miguelanez R.
    • Gervasini G.
    • Ghani Z.
    • Ghezzi F.M.
    • Ghillardi G.
    • Giannone L.
    • Gibson S.
    • Gil L.
    • Gillgren A.
    • Giovannozzi E.
    • Giroud C.
    • Giruzzi G.
    • Gleiter T.
    • Gobbin M.
    • Goloborodko V.
    • González Ganzábal A.
    • Goodman T.
    • Gopakumar V.
    • Gorini G.
    • Görler T.
    • Gorno S.
    • Granucci G.
    • Greenhouse D.
    • Grenfell G.
    • Griener M.
    • Gromelski W.
    • Groth M.
    • Grover O.
    • Gruca M.
    • Gude A.
    • Guillemaut C.
    • Guirlet R.
    • Gunn J.
    • Gyergyek T.
    • Hagg L.
    • Hakola A.
    • Hall J.
    • Ham C.J.
    • Hamed M.
    • Happel T.
    • Harrer G.
    • Harrison J.
    • Harting D.
    • Hawkes N.C.
    • Heinrich P.
    • Henderson S.
    • Hennequin P.
    • Henriques R.
    • Heuraux S.
    • Hidalgo Salaverri J.
    • Hillairet J.
    • Hillesheim J.C.
    • Hjalmarsson A.
    • Ho A.
    • Hobirk J.
    • Hodille E.
    • Hölzl M.
    • Hoppe M.
    • Horacek J.
    • Horsten N.
    • Horvath L.
    • Houry M.
    • Hromasova K.
    • Huang J.
    • Huang Z.
    • Huber A.
    • Huett E.
    • Huynh P.
    • Iantchenko A.
    • Imrisek M.
    • Innocente P.
    • Ionita Schrittwieser C.
    • Isliker H.
    • Ivanova P.
    • Ivanova Stanik I.
    • Jablczynska M.
    • Jachmich S.
    • Jacobsen A.S.
    • Jacquet P.
    • Jansen van Vuuren A.
    • Jardin A.
    • Järleblad H.
    • Järvinen A.
    • Jaulmes F.
    • Jensen T.
    • Jepu I.
    • Jessica S.
    • Joffrin E.
    • Johnson T.
    • Juven A.
    • Kalis J.
    • Kappatou A.
    • Karhunen J.
    • Karimov R.
    • Karpushov A.N.
    • Kasilov S.
    • Kazakov Y.
    • Kazantzidis P.V.
    • Keeling D.
    • Kernbichler W.
    • Kim Ht.
    • King D.B.
    • Kiptily V.G.
    • Kirjasuo A.
    • Kirov K.K.
    • Kirschner A.
    • Kit A.
    • Kiviniemi T.
    • Kjær F.
    • Klinkby E.
    • Knieps A.
    • Knoche U.
    • Kochan M.
    • Köchl F.
    • Kocsis G.
    • Koenders J.T.W.
    • Kogan L.
    • Kolesnichenko Y.
    • Kominis Y.
    • Komm M.
    • Kong M.
    • Kool B.
    • Korsholm S.B.
    • Kos D.
    • Koubiti M.
    • Kovacic J.
    • Kovtun Y.
    • Kowalska Strzeciwilk E.
    • Koziol K.
    • Kozulia M.
    • Krämer Flecken A.
    • Kreter A.
    • Krieger K.
    • Kruezi U.
    • Krutkin O.
    • Kudlacek O.
    • Kumar U.
    • Kumpulainen H.
    • Kushoro M.H.
    • Kwiatkowski R.
    • La Matina M.
    • Labit B.
    • Lacquaniti M.
    • Laguardia L.
    • Lainer P.
    • Lang P.
    • Larsen M.
    • Laszynska E.
    • Lawson K.D.
    • Lazaros A.
    • Lazzaro E.
    • Lee M.Y.K.
    • Leerink S.
    • Lehnen M.
    • Lennholm M.
    • Lerche E.
    • Liang Y.
    • Lier A.
    • Likonen J.
    • Linder O.
    • Lipschultz B.
    • Listopad A.
    • Litaudon X.
    • Litherland Smith E.
    • Liuzza D.
    • Loarer T.
    • Lomas P.J.
    • Lombardo J.
    • Lonigro N.
    • Lorenzini R.
    • Lowry C.
    • Luda Di Cortemiglia T.
    • Ludvig Osipov A.
    • Lunt T.
    • Lutsenko V.
    • Macusova E.
    • Mäenpää R.
    • Maget P.
    • Maggi C.F.
    • Mailloux J.
    • Makarov S.
    • Malinowski K.
    • Manas P.
    • Mancini A.
    • Mancini D.
    • Mantica P.
    • Mantsinen M.
    • Manyer J.
    • Maraschek M.
    • Marceca G.
    • Marcer G.
    • Marchetto C.
    • Marchioni S.
    • Mariani A.
    • Marin M.
    • Markl M.
    • Markovic T.
    • Marocco D.
    • Marsden S.
    • Martellucci L.
    • Martin P.
    • Martin C.
    • Martinelli F.
    • Martinelli L.
    • Martin Solis J.R.
    • Martone R.
    • Maslov M.
    • Masocco R.
    • Mattei M.
    • Matthews G.F.
    • Matveev D.
    • Matveeva E.
    • Mayoral M.L.
    • Mazon D.
    • Mazzi S.
    • Mazzotta C.
    • Mcardle G.
    • McDermott R.
    • Mckay K.
    • Meigs A.G.
    • Meineri C.
    • Mele A.
    • Menkovski V.
    • Menmuir S.
    • Merle A.
    • Meyer H.
    • Mikszuta Michalik K.
    • Milanesio D.
    • Militello F.
    • Milocco A.
    • Miron I.G.
    • Mitchell J.
    • Mitteau R.
    • Mitterauer V.
    • Mlynar J.
    • Moiseenko V.
    • Molna P.
    • Mombelli F.
    • Monti C.
    • Montisci A.
    • Morales J.
    • Moreau P.
    • Moret J.M.
    • Moro A.
    • Moulton D.
    • Mulholland P.
    • Muraglia M.
    • Murari A.
    • Muraro A.
    • Muscente P.
    • Mykytchuk D.
    • Nabais F.
    • Nakeva Y.
    • Napoli F.
    • Nardon E.
    • Nave M.F.
    • Nem R.D.
    • Nielsen A.
    • Nielsen S.K.
    • Nocente M.
    • Nouailletas R.
    • Nowak S.
    • Nyström H.
    • Ochoukov R.
    • Offeddu N.
    • Olasz S.
    • Olde C.
    • Oliva F.
    • Oliveira D.
    • Oliver H.J.C.
    • Ollus P.
    • Ongena J.
    • Orsitto F.P.
    • Osborne N.
    • Otin R.
    • Oyola Dominguez P.
    • Palade D.I.
    • Palomba S.
    • Pan O.
    • Panadero N.
    • Panontin E.
    • Papadopoulos A.
    • Papagiannis P.
    • Papp G.
    • Parail V.V.
    • Pardanaud C.
    • Parisi J.
    • Parrott A.
    • Paschalidis K.
    • Passoni M.
    • Pastore F.
    • Patel A.
    • Patel B.
    • Pau A.
    • Pautasso G.
    • Pavlichenko R.
    • Pawelec E.
    • Pegourie B.
    • Pelka G.
    • Peluso E.
    • Perek A.
    • Perelli Cippo E.
    • Perez von Thun C.
    • Petersson P.
    • Petravich G.
    • Peysson Y.
    • Piergotti V.
    • Pigatto L.
    • Piron C.
    • Piron L.
    • Pironti A.
    • Pisano F.
    • Plank U.
    • Ploeckl B.
    • Plyusnin V.
    • Podolnik A.
    • Poels Y.
    • Pokol G.
    • Poley J.
    • Por G.
    • Poradzinski M.
    • Porcelli F.
    • Porte L.
    • Possieri C.
    • Poulsen A.
    • Predebon I.
    • Pucella G.
    • Pueschel M.
    • Puglia P.
    • Putignano O.
    • Pütterich T.
    • Quadri V.
    • Quercia A.
    • Rabinski M.
    • Radovanovic L.
    • Ragona R.
    • Raj H.
    • Rasinski M.
    • Rasmussen J.
    • Ratta G.
    • Ratynskaia S.
    • Rayaprolu R.
    • Rebai M.
    • Redl A.
    • Rees D.
    • Refy D.
    • Reich M.
    • Reimerdes H.
    • Reman B.C.G.
    • Renders O.
    • Reux C.
    • Ricci D.
    • Richou M.
    • Rienacker S.
    • Rigamonti D.
    • Rigollet F.
    • Rimini F.G.
    • Ripamonti D.
    • Rispoli N.
    • Rivals N.
    • Rivero Rodriguez J.F.
    • Roach C.
    • Rocchi G.
    • Rode S.
    • Rodrigues P.
    • Romazanov J.
    • Romero Madrid C.F.
    • Rosato J.
    • Rossi R.
    • Rubino G.
    • Rueda Rueda J.
    • Ruiz Ruiz J.
    • Ryan P.
    • Ryan D.
    • Saarelma S.
    • Sabot R.
    • Salewski M.
    • Salmi A.
    • Sanchis L.
    • Sand A.
    • Santos J.
    • Särkimäki K.
    • Sassano M.
    • Sauter O.
    • Schettini G.
    • Schmuck S.
    • Schneider P.
    • Schoonheere N.
    • Schramm R.
    • Schrittwieser R.
    • Schuster C.
    • Schwarz N.
    • Sciortino F.
    • Scotto D’abusco M.
    • Scully S.
    • Selce A.
    • Senni L.
    • Senstius M.
    • Sergienko G.
    • Sharapov S.E.
    • Sharma R.
    • Shaw A.
    • Sheikh U.
    • Sias G.
    • Sieglin B.
    • Silburn S.A.
    • Silva C.
    • Silva A.
    • Silvagni D.
    • Simmendefeldt Schmidt B.
    • Simons L.
    • Simpson J.
    • Singh L.
    • Sipilä S.
    • Siusko Y.
    • Smith S.
    • Snicker A.
    • Solano E.R.
    • Solokha V.
    • Sos M.
    • Sozzi C.
    • Spineanu F.
    • Spizzo G.
    • Spolaore M.
    • Spolladore L.
    • Srinivasan C.
    • Stagni A.
    • Stancar Z.
    • Stankunas G.
    • Stober J.
    • Strand P.
    • Stuart C.I.
    • Subba F.
    • Sun G.Y.
    • Sun H.J.
    • Suttrop W.
    • Svoboda J.
    • Szepesi T.
    • Szepesi G.
    • Tal B.
    • Tala T.
    • Tamain P.
    • Tardini G.
    • Tardocchi M.
    • Taylor D.
    • Telesca G.
    • Tenaglia A.
    • Terra A.
    • Terranova D.
    • Testa D.
    • Theiler C.
    • Tholerus E.
    • Thomas B.
    • Thoren E.
    • Thornton A.
    • Thrysoe A.
    • Tichit Q.
    • Tierens W.
    • Titarenko A.
    • Tolias P.
    • Tomasina E.
    • Tomes M.
    • Tonello E.
    • Tookey A.
    • Toscano Jiménez M.
    • Tsironis C.
    • Tsitrone E.
    • Tsitrone E.
    • Tsui C.
    • Tykhyy A.
    • Ugoletti M.
    • Usoltseva M.
    • Valcarcel D.F.
    • Valentini A.
    • Valisa M.
    • Vallar M.
    • Valovic M.
    • Valvis Si.
    • van Berkel M.
    • van Eester D.
    • van Mulders S.
    • van Rossem M.
    • Vann R.
    • Vanovac B.
    • Varela Rodriguez J.
    • Varje J.
    • Vartanian S.
    • Vecsei M.
    • Velarde Gallardo L.
    • Veranda M.
    • Verdier T.
    • Verdoolaege G.
    • Verhaegh K.
    • Vermare L.
    • Verona Rinati G.
    • Vianello N.
    • Vicente J.
    • Viezzer E.
    • Vignitchouk L.
    • Villone F.
    • Vincent B.
    • Vincenzi P.
    • Vlad M.O.
    • Vogel G.
    • Voitsekhovitch I.
    • Voldiner I.
    • Vondracek P.
    • Vu N.M.T.
    • Vuoriheimo T.
    • Wade C.
    • Wang E.
    • Wauters T.
    • Weiland M.
    • Weisen H.
    • Wendler N.
    • Weston D.
    • Widdowson A.
    • Wiesen S.
    • Wiesenberger M.
    • Wijkamp T.
    • Willensdorfer M.
    • Wilson T.
    • Wischmeier M.
    • Wojenski A.
    • Wuethrich C.
    • Wyss I.
    • Xiang L.
    • Xu S.
    • Yadykin D.
    • Yakovenko Y.
    • Yang H.
    • Yanovskiy V.
    • Yi R.
    • Zaar B.
    • Zadvitskiy G.
    • Zakharov L.
    • Zanca P.
    • Zarzoso D.
    • Zayachuk Y.
    • Zebrowski J.
    • Zerbini M.
    • Zestanakis P.
    • Zimmermann C F B
    • Zlobinski M.
    • Zohar A.
    • Zotta V.K.
    • Zou X.
    • Zuin M.
    • Zurita M.
    • Zychor I.
    Nuclear Fusion, IOP Publishing, 2024, 64 (11), pp.112019. Abstract Within the 9th European Framework programme, since 2021 EUROfusion is operating five tokamaks under the auspices of a single Task Force called ‘Tokamak Exploitation’. The goal is to benefit from the complementary capabilities of each machine in a coordinated way and help in developing a scientific output scalable to future largre machines. The programme of this Task Force ensures that ASDEX Upgrade, MAST-U, TCV, WEST and JET (since 2022) work together to achieve the objectives of Missions 1 and 2 of the EUROfusion Roadmap: i) demonstrate plasma scenarios that increase the success margin of ITER and satisfy the requirements of DEMO and, ii) demonstrate an integrated approach that can handle the large power leaving ITER and DEMO plasmas. The Tokamak Exploitation task force has therefore organized experiments on these two missions with the goal to strengthen the physics and operational basis for the ITER baseline scenario and for exploiting the recent plasma exhaust enhancements in all four devices (PEX: Plasma EXhaust) for exploring the solution for handling heat and particle exhaust in ITER and develop the conceptual solutions for DEMO. The ITER Baseline scenario has been developed in a similar way in ASDEX Upgrade, TCV and JET. Key risks for ITER such as disruptions and run-aways have been also investigated in TCV, ASDEX Upgrade and JET. Experiments have explored successfully different divertor configurations (standard, super-X, snowflakes) in MAST-U and TCV and studied tungsten melting in WEST and ASDEX Upgrade. The input from the smaller devices to JET has also been proven successful to set-up novel control schemes on disruption avoidance and detachment. (10.1088/1741-4326/ad2be4)
    DOI : 10.1088/1741-4326/ad2be4
  • Overview of ASDEX upgrade results in view of ITER and DEMO
    • Zohm H.
    • Alessi E.
    • Angioni C.
    • Arden N.
    • Artigues V.
    • Astrain M.
    • Asunta O.
    • Balden M.
    • Bandaru V.
    • Banon Navarro A.
    • Bauer M.
    • Bergmann A.
    • Bergmann M.
    • Bernardo J.
    • Bernert M.
    • Biancalani A.
    • Bielajew R.
    • Bilato R.
    • Birkenmeier G.
    • Blanken T.
    • Bobkov V.
    • Bock A.
    • Bock L.
    • Body T.
    • Bolzonella T.
    • Bonanomi N.
    • Bortolon A.
    • Böswirth B.
    • Bottereau C.
    • Bottino A.
    • van den Brand H.
    • Brenzke M.
    • Brezinsek S.
    • Brida D.
    • Brochard F.
    • Buchanan J.
    • Buhler A.
    • Burckhart A.
    • Camenen Y.
    • Cannas B.
    • Cano Megías P.
    • Carlton D.
    • Carr M.
    • Carvalho P.
    • Castaldo C.
    • Castillo Castillo A.
    • Cathey A.
    • Cavedon M.
    • Cazzaniga C.
    • Challis C.
    • Chankin A.
    • Chomiczewska A.
    • Cianfarani C.
    • Clairet F.
    • Coda S.
    • Coelho R.
    • Coenen J.W.
    • Colas L.
    • Conway G.
    • Costea S.
    • Coster D.
    • Cote T.
    • Creely A.J.
    • Croci G.
    • Cruz Zabala D.J.
    • Cseh G.
    • Cziegler I.
    • D’arcangelo O.
    • Dal Molin A.
    • David P.
    • Day C.
    • de Baar M.
    • de Marné P.
    • Delogu R.
    • Denner P.
    • Di Siena A.
    • Dibon M.
    • Dominguez-Palacios Durán J.J.
    • Dunai D.
    • Dreval M.
    • Dunne M.
    • Duval B.P.
    • Dux R.
    • Eich T.
    • Elgeti S.
    • Encheva A.
    • Esposito B.
    • Fable E.
    • Faitsch M.
    • Fajardo Jimenez D.
    • Fantz U.
    • Farnik M.
    • Faugel H.
    • Felici F.
    • Ficker O.
    • Figueredo A.
    • Fischer R.
    • Ford O.
    • Frassinetti L.
    • Fröschle M.
    • Fuchert G.
    • Fuchs J.C.
    • Fünfgelder H.
    • Futatani S.
    • Galazka K.
    • Galdon-Quiroga J.
    • Gallart Escolà D.
    • Gallo A.
    • Gao Y.
    • Garavaglia S.
    • Garcia Muñoz M.
    • Geiger B.
    • Giannone L.
    • Gibson S.
    • Gil L.
    • Giovannozzi E.
    • Girka I.
    • Girka O.
    • Gleiter T.
    • Glöggler S.
    • Gobbin M.
    • Gonzalez J.C.
    • Gonzalez Martin J.
    • Goodman T.
    • Gorini G.
    • Görler T.
    • Gradic D.
    • Granucci G.
    • Gräter A.
    • Grenfell G.
    • Greuner H.
    • Griener M.
    • Groth M.
    • Grover O.
    • Gude A.
    • Guimarais L.
    • Günter S.
    • Hachmeister D.
    • Hakola A.H.
    • Ham C.
    • Happel T.
    • den Harder N.
    • Harrer G.
    • Harrison J.
    • Hauer V.
    • Hayward-Schneider T.
    • Heinemann B.
    • Heinrich P.
    • Hellsten T.
    • Henderson S.
    • Hennequin P.
    • Herschel M.
    • Heuraux S.
    • Herrmann A.
    • Heyn E.
    • Hitzler F.
    • Hobirk J.
    • Höfler K.
    • Hörmann S.
    • Holm J.H.
    • Hölzl M.
    • Hopf C.
    • Horvath L.
    • Höschen T.
    • Houben A.
    • Hubbard A.
    • Huber A.
    • Hunger K.
    • Igochine V.
    • Iliasova M.
    • Illerhaus J.
    • Insulander Björk K.
    • Ionita-Schrittwieser C.
    • Ivanova-Stanik I.
    • Jachmich S.
    • Jacob W.
    • Jaksic N.
    • Jansen van Vuuren A.
    • Jaulmes F.
    • Jenko F.
    • Jensen T.
    • Joffrin E.
    • Kallenbach A.
    • Kalis J.
    • Kappatou A.
    • Karhunen J.
    • Käsemann C.-P.
    • Kasilov S.
    • Kazakov Y.
    • Kendl A.
    • Kernbichler W.
    • Khilkevitch E.
    • Kircher M.
    • Kirk A.
    • Kjer Hansen S.
    • Klevarova V.
    • Klossek F.
    • Kocsis G.
    • Koleva M.
    • Komm M.
    • Kong M.
    • Krämer-Flecken A.
    • Krause M.
    • Krebs I.
    • Kreuzeder A.
    • Krieger K.
    • Kudlacek O.
    • Kulla D.
    • Kurki-Suonio T.
    • Kurzan B.
    • Labit B.
    • Lackner K.
    • Laggner F.
    • Lahtinen A.
    • Lainer P.
    • Lang P.T.
    • Lauber P.
    • Lehnen M.
    • Leppin L.
    • Lerche E.
    • Leuthold N.
    • Li L.
    • Likonen J.
    • Linder O.
    • Lindl H.
    • Lipschultz B.
    • Liu Y.
    • Lu Z.
    • Luda Di Cortemiglia T.
    • Luhmann N.C.
    • Lunt T.
    • Lyssoivan A.
    • Maceina T.
    • Madsen J.
    • Magnanimo A.
    • Maier H.
    • Mailloux J.
    • Maingi R.
    • Maj O.
    • Maljaars E.
    • Maquet V.
    • Mancini A.
    • Manhard A.
    • Mantica P.
    • Mantsinen M.
    • Manz P.
    • Maraschek M.
    • Marchetto C.
    • Markl M.
    • Marrelli L.
    • Martin P.
    • Matos F.
    • Mayer M.
    • Mccarthy P.J.
    • McDermott R.
    • Meng G.
    • Merkel R.
    • Merle A.
    • Meyer H.
    • Michelini M.
    • Milanesio D.
    • Mitterauer V.
    • Molina Cabrera P.
    • Muraca M.
    • Nabais F.
    • Naulin V.
    • Nazikian R.
    • Nem R.D.
    • Neu R.
    • Nielsen A.H.
    • Nielsen S.K.
    • Nishizawa T.
    • Nocente M.
    • Novikau I.
    • Nowak S.
    • Ochoukov R.
    • Olsen J.
    • Oyola P.
    • Pan O.
    • Papp G.
    • Pau A.
    • Pautasso G.
    • Paz-Soldan C.
    • Peglau M.
    • Peluso E.
    • Petersson P.
    • Piron C.
    • Plank U.
    • Plaum B.
    • Plöckl B.
    • Plyusnin V.
    • Pokol G.
    • Poli E.
    • Popa A.
    • Porte L.
    • Puchmayr J.
    • Pütterich T.
    • Radovanovic L.
    • Ramisch M.
    • Rasmussen J.
    • Ratta G.
    • Ratynskaia S.
    • Raupp G.
    • Redl A.
    • Réfy D.
    • Reich M.
    • Reimold F.
    • Reiser D.
    • Reisner M.
    • Reiter D.
    • Rettino B.
    • Ribeiro T.
    • Ricci D.
    • Riedl R.
    • Riesch J.
    • Rivero Rodriguez J.F.
    • Rocchi G.
    • Rodriguez-Fernandez P.
    • Rohde V.
    • Ronchi G.
    • Rott M.
    • Rubel M.
    • Ryan D.A.
    • Ryter F.
    • Saarelma S.
    • Salewski M.
    • Salmi A.
    • Samoylov O.
    • Sanchis Sanchez L.
    • Santos J.
    • Sauter O.
    • Schall G.
    • Schlüter A.
    • Scholte J.
    • Schmid K.
    • Schmitz O.
    • Schneider P.A.
    • Schrittwieser R.
    • Schubert M.
    • Schuster C.
    • Schwarz N.
    • Schwarz-Selinger T.
    • Schweinzer J.
    • Sciortino F.
    • Seibold-Benjak O.
    • Shabbir A.
    • Shalpegin A.
    • Sharapov S.
    • Sheikh U.
    • Shevelev A.
    • Sias G.
    • Siccinio M.
    • Sieglin B.
    • Sigalov A.
    • Silva A.
    • Silva C.
    • Silvagni D.
    • Simpson J.
    • Sipilä S.
    • Snicker A.
    • Solano E.
    • Sommariva C.
    • Sozzi C.
    • Spacek M.
    • Spizzo G.
    • Spolaore M.
    • Stegmeir A.
    • Stejner M.
    • Stieglitz D.
    • Stober J.
    • Stroth U.
    • Strumberger E.
    • Suarez Lopez G.
    • Suttrop W.
    • Szepesi T.
    • Tál B.
    • Tala T.
    • Tang W.
    • Tardini G.
    • Tardocchi M.
    • Terranova D.
    • Teschke M.
    • Thorén E.
    • Tierens W.
    • Told D.
    • Treutterer W.
    • Trevisan G.
    • Tripský M.
    • Ulbl P.
    • Urbanczyk G.
    • Usoltseva M.
    • Valisa M.
    • Valovic M.
    • van Mulders S.
    • van Zeeland M.
    • Vannini F.
    • Vanovac B.
    • Varela P.
    • Varoutis S.
    • Verdier T.
    • Verdoolaege G.
    • Vianello N.
    • Vicente J.
    • Vierle T.
    • Viezzer E.
    • Voitsekhovitch I.
    • von Toussaint U.
    • Wagner D.
    • Wang X.
    • Weiland M.
    • Wendler D.
    • White A.E.
    • Willensdorfer M.
    • Wiringer B.
    • Wischmeier M.
    • Wolf R.
    • Wolfrum E.
    • Yang Q.
    • Yoo C.
    • Yu Q.
    • Zagórski R.
    • Zammuto I.
    • Zehetbauer T.
    • Zhang W.
    • Zholobenko W.
    • Zibrov A.
    • Zilker M.
    • Zimmermann C.F.B.
    • Zito A.
    • Zohm H.
    • Zoletnik S.
    Nuclear Fusion, IOP Publishing, 2024, 64 (11), pp.112001. Abstract Experiments on ASDEX Upgrade (AUG) in 2021 and 2022 have addressed a number of critical issues for ITER and EU DEMO. A major objective of the AUG programme is to shed light on the underlying physics of confinement, stability, and plasma exhaust in order to allow reliable extrapolation of results obtained on present day machines to these reactor-grade devices. Concerning pedestal physics, the mitigation of edge localised modes (ELMs) using resonant magnetic perturbations (RMPs) was found to be consistent with a reduction of the linear peeling-ballooning stability threshold due to the helical deformation of the plasma. Conversely, ELM suppression by RMPs is ascribed to an increased pedestal transport that keeps the plasma away from this boundary. Candidates for this increased transport are locally enhanced turbulence and a locked magnetic island in the pedestal. The enhanced D-alpha (EDA) and quasi-continuous exhaust (QCE) regimes have been established as promising ELM-free scenarios. Here, the pressure gradient at the foot of the H-mode pedestal is reduced by a quasi-coherent mode, consistent with violation of the high-n ballooning mode stability limit there. This is suggestive that the EDA and QCE regimes have a common underlying physics origin. In the area of transport physics, full radius models for both L- and H-modes have been developed. These models predict energy confinement in AUG better than the commonly used global scaling laws, representing a large step towards the goal of predictive capability. A new momentum transport analysis framework has been developed that provides access to the intrinsic torque in the plasma core. In the field of exhaust, the X-Point Radiator (XPR), a cold and dense plasma region on closed flux surfaces close to the X-point, was described by an analytical model that provides an understanding of its formation as well as its stability, i.e., the conditions under which it transitions into a deleterious MARFE with the potential to result in a disruptive termination. With the XPR close to the divertor target, a new detached divertor concept, the compact radiative divertor, was developed. Here, the exhaust power is radiated before reaching the target, allowing close proximity of the X-point to the target. No limitations by the shallow field line angle due to the large flux expansion were observed, and sufficient compression of neutral density was demonstrated. With respect to the pumping of non-recycling impurities, the divertor enrichment was found to mainly depend on the ionisation energy of the impurity under consideration. In the area of MHD physics, analysis of the hot plasma core motion in sawtooth crashes showed good agreement with nonlinear 2-fluid simulations. This indicates that the fast reconnection observed in these events is adequately described including the pressure gradient and the electron inertia in the parallel Ohm’s law. Concerning disruption physics, a shattered pellet injection system was installed in collaboration with the ITER International Organisation. Thanks to the ability to vary the shard size distribution independently of the injection velocity, as well as its impurity admixture, it was possible to tailor the current quench rate, which is an important requirement for future large devices such as ITER. Progress was also made modelling the force reduction of VDEs induced by massive gas injection on AUG. The H-mode density limit was characterised in terms of safe operational space with a newly developed active feedback control method that allowed the stability boundary to be probed several times within a single discharge without inducing a disruptive termination. Regarding integrated operation scenarios, the role of density peaking in the confinement of the ITER baseline scenario (high plasma current) was clarified. The usual energy confinement scaling ITER98( p,y ) does not capture this effect, but the more recent H20 scaling does, highlighting again the importance of developing adequate physics based models. Advanced tokamak scenarios, aiming at large non-inductive current fraction due to non-standard profiles of the safety factor in combination with high normalised plasma pressure were studied with a focus on their access conditions. A method to guide the approach of the targeted safety factor profiles was developed, and the conditions for achieving good confinement were clarified. Based on this, two types of advanced scenarios (‘hybrid’ and ‘elevated’ q -profile) were established on AUG and characterised concerning their plasma performance. (10.1088/1741-4326/ad249d)
    DOI : 10.1088/1741-4326/ad249d
  • Spatial distribution of plasma density and magnetic field amplitude in the dayside magnetosheath as a function of the IMF orientation
    • Michotte de Welle Bayane
    • Aunai Nicolas
    • Lavraud Benoit
    • Génot Vincent
    • Jeandet Alexis
    • Nguyen Gautier
    • Ghisalberti Ambre
    • Smets Roch
    Frontiers in Astronomy and Space Sciences, Frontiers Media, 2024, 11. The properties of the magnetosheath are of pivotal importance in determining the coupling between the magnetosphere and interplanetary medium. In particular, the magnetic flux pileup and plasma depletion layer (PDL) modify the boundary conditions of magnetopause reconnection. However, the spatial distribution of the magnetic field strength and plasma density in the magnetosheath and their functional dependence on the interplanetary magnetic field (IMF) orientation remain poorly understood. This study characterizes these aspects in detail through the statistical processing of decades of data from Cluster, Double Star, THEMIS, and Magnetospheric Multiscale (MMS) missions. The first part of this study focuses on the poorly known variations across the magnetosheath, from the shock to the magnetopause. The magnetic pileup and PDL are significantly correlated, with a strong dependence on the IMF cone angle. Their dependence on the IMF clock angle is found only near the magnetopause, consistent with the expected effect of magnetic reconnection. The second part of this study examines the asymmetry in the magnetic field amplitude and density between the quasi-parallel and quasi-perpendicular sides of the equatorial magnetosheath. These asymmetries are characterized for different relative distances to the magnetopause and bow shock boundaries and for different IMF orientation. The magnetic field amplitude, observed to be higher on the quasi-perpendicular side of the magnetosheath, becomes more symmetric as it approaches the magnetopause. The quasi-parallel magnetosheath exhibits a higher plasma density near the magnetopause. However, this asymmetry reverses at approximately the mid-magnetosheath with a decreasing IMF cone angle. (10.3389/fspas.2024.1427791)
    DOI : 10.3389/fspas.2024.1427791
  • Deep Entry of Low‐Energy Ions Into Mercury’s Magnetosphere: BepiColombo Mio’s Third Flyby Observations
    • Harada Yuki
    • Saito Yoshifumi
    • Hadid Lina
    • Delcourt Dominique
    • Aizawa Sae
    • Rojo Mathias
    • André Nicolas
    • Persson Moa
    • Fraenz Markus
    • Yokota Shoichiro
    • Fedorov Andréi
    • Miyake Wataru
    • Penou Emmanuel
    • Barthe Alain
    • Sauvaud Jean‐andré
    • Katra Bruno
    • Matsuda Shoya
    • Murakami Go
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2024, 129 (8), pp.316. Abstract Although solar wind‐driven convection is expected to dominate magnetospheric circulation at Mercury, its exact pattern remains poorly characterized by observations. Here we present BepiColombo Mio observations during the third Mercury flyby indicative of convection‐driven transport of low‐energy dense ions into the deep magnetosphere. During the flyby, Mio observed an energy‐dispersed ion population from the duskside magnetopause to the deep region of the midnight magnetosphere. A comparison of the observations with backward test particle simulations suggests that the observed energy dispersion structure can be explained in terms of energy‐selective transport by convection from the duskside tail magnetopause. We also discuss the properties and origins of more energetic ions observed in the more dipole‐like field regions of the magnetosphere in comparison to previously reported populations of the plasma sheet horn and ring current ions. Additionally, forward test particle simulations predict that most of the observed ions on the nightside will precipitate onto relatively low‐latitude regions of the nightside surface of Mercury for a typical convection case. The presented observations and simulation results reveal the critical role of magnetospheric convection in determining the structure of Mercury's magnetospheric plasma. The upstream driver dependence of magnetospheric convection and its effects on other magnetospheric processes and plasma‐surface interactions should be further investigated by in‐orbit BepiColombo observations. (10.1029/2024JA032751)
    DOI : 10.1029/2024JA032751
  • Evaluation of Scale-dependent Kurtosis with HelioSwarm
    • Pecora Francesco
    • Pucci Francesco
    • Malara Francesco
    • Klein Kristopher
    • Marcucci Maria Federica
    • Retinò Alessandro
    • Matthaeus William
    The Astrophysical Journal Letters, Bristol : IOP Publishing, 2024, 970 (2), pp.L36. Abstract Plasma turbulence involves complex, nonlinear interactions of electromagnetic fields and charged particles across multiple scales. Studying these phenomena in space plasmas, like the solar wind, is facilitated by the intrinsic scale separations and the availability of in situ spacecraft observations. However, the single-point or single-scale configurations of current spacecraft limit our understanding of many properties of the turbulent solar wind. To overcome these limitations, multipoint measurements spanning a range of characteristic scales are essential. This Letter prepares for the enhanced measurement capabilities of upcoming multispacecraft missions by demonstrating that higher-order statistics, specifically kurtosis, as a baseline for intermittency can be accurately measured. Using synthetic turbulent fields with adjustable intermittency levels, we achieve scale separations analogous to those in the solar wind and apply these techniques to the planned trajectories of the HelioSwarm mission. This approach promises significant advancements in our understanding of plasma turbulence. (10.3847/2041-8213/ad5fff)
    DOI : 10.3847/2041-8213/ad5fff
  • Earth's Alfvén Wings Driven by the April 2023 Coronal Mass Ejection
    • Chen Li‐jen
    • Gershman Daniel
    • Burkholder Brandon
    • Chen Yuxi
    • Sarantos Menelaos
    • Jian Lan
    • Drake James
    • Dong Chuanfei
    • Gurram Harsha
    • Shuster Jason
    • Graham Daniel
    • Le Contel Olivier
    • Schwartz Steven
    • Fuselier Stephen
    • Madanian Hadi
    • Pollock Craig
    • Liang Haoming
    • Argall Matthew
    • Denton Richard
    • Rice Rachel
    • Beedle Jason
    • Genestreti Kevin
    • Ardakani Akhtar
    • Stanier Adam
    • Le Ari
    • Ng Jonathan
    • Bessho Naoki
    • Pandya Megha
    • Wilder Frederick
    • Gabrielse Christine
    • Cohen Ian
    • Wei Hanying
    • Russell Christopher
    • Ergun Robert
    • Torbert Roy
    • Burch James
    Geophysical Research Letters, American Geophysical Union, 2024, 51 (14). Abstract We report a rare regime of Earth's magnetosphere interaction with sub‐Alfvénic solar wind in which the windsock‐like magnetosphere transforms into one with Alfvén wings. In the magnetic cloud of a Coronal Mass Ejection (CME) on 24 April 2023, NASA's Magnetospheric Multiscale mission distinguishes the following features: (a) unshocked and accelerated low‐beta CME plasma coming directly against Earth's dayside magnetosphere; (b) dynamical wing filaments representing new channels of magnetic connection between the magnetosphere and foot points of the Sun's erupted flux rope; (c) cold CME ions observed with energized counter‐streaming electrons, evidence of CME plasma captured due to by reconnection between magnetic‐cloud and Alfvén‐wing field lines. The reported measurements advance our knowledge of CME interaction with planetary magnetospheres, and open new opportunities to understand how sub‐Alfvénic plasma flows impact astrophysical bodies such as Mercury, moons of Jupiter, and exoplanets close to their host stars. (10.1029/2024GL108894)
    DOI : 10.1029/2024GL108894
  • Electron populations observed by Mercury Electron Analyzer onboard Mio/BepiColombo during its Mercury flybys
    • Aizawa Sae
    • André Nicolas
    • Saito Yoshifumi
    • Rojo Mathias
    • Sauvaud Jean-Andre
    • Fedorov Andrei
    • Yokota Shoichiro
    • Barthe Alain
    • Penou Emmanuel
    • Persson Moa
    • Harada Yuki
    • Delcourt Dominique
    • Hadid Lina
    • Murakami Go
    , 2023, 2023. BepiColombo was launched in October 2018 and is currently en route to Mercury. Although its orbit insertion is planned for December 2025, BepiColombo acquires new measurements during Mercury flybys. During the cruise phase, the two spacecraft are docked together with Mio being protected behind the sun shield. Thus, only partial observations of plasma distribution functions can be obtained by the Mercury Plasma Particle Experiment (MPPE) onboard Mio. However, since electrons have small Larmor radii and more isotropic distributions even in the solar wind, the two Mercury Electron Analyzer (MEA) of MPPE will provide us with new and unique measurements in the range of 5 eV to 3 keV when in solar wind mode and 3 eV to ~ 26 keV when in magnetospheric mode. We will present the interesting observations obtained by MEA onboard Mio/BepiColombo during its Mercury flybys. In particular we will focus on electrons fluctuations with the energies of ~ keV on the dawn side of Mercury's magnetosphere.
  • Feedback Effects in Positive Corona and Relativistic Runaway Discharges
    • Pasko Victor P.
    • Celestin Sebastien J.
    • Bourdon Anne
    • Janalizadeh Reza
    • Jansky Jaroslav
    , 2023, 2023. We discuss characteristic scales and direct physical analogy between the photoionization feedback in conventional positive corona discharges in air and the photoelectric feedback in discharges driven by relativistic runaway electrons in air. In a positive corona system the avalanche of electrons in bulk of discharge volume is initiated by specific distribution of photoionization far away from the electrode. Under inception conditions in positive corona each electron arriving at the anode creates on average just enough seed electrons in discharge volume through photoionization to replicate itself. Under these self-sustained steady state conditions, photoionization feedback produces just enough secondary electrons upstream of the avalanche to maintain the system in steady state. Analogically, in case of relativistic electron avalanches a feedback process is realized when X-rays emitted by these electrons travel backwards with respect to the electron motion and generate new relativistic electron seeds due to the photoelectric absorption in air. It is demonstrated that terrestrial gamma-ray flashes are produced by growth of long bidirectional lightning leader system consisting of positive and stepping negative leaders. The spatial extent of streamer zones of a typical lightning leader with tip potential exceeding several tens of megavolts is on the order of 10-100 m. The photoelectric absorption of bremsstrahlung radiation generated by avalanching relativistic runaway electrons occurs efficiently on the same spatial scales. The intense multiplication of these electrons is triggered when the size of the negative leader streamer zone crosses a threshold of approximately 100 m (for sea-level air pressure conditions) allowing self-replication of these avalanches due to the upstream relativistic electron seeds generated by the photoelectric absorption. <P />References: Pasko et al., GRL, 50, e2022GL102710, 2023, https://doi.org/10.1029/2022GL102710 Pasko et al., PSST, 32, 075014, 2023, https://doi.org/10.1088/1361-6595/ace6d0
  • New Observations of Mercury's Foreshock Made by BepiColombo
    • Glass Austin N.
    • Hadid Lina
    • Delcourt Dominique
    • Saito Yoshifumi
    • Fraenz Markus
    • Yokota Shoichiro
    • Fiethe Björn
    • Verdeil Christophe
    • Katra Bruno
    • Harada Yuki
    • Aizawa Sae
    • Raines Jim M.
    • Leblanc Frederic
    • Fischer Henning
    • Fontaine Dominique
    • Krupp Norbert
    • Krüger Harald
    • Murakami Go
    • Matsuda Shoya
    • Baumjohann Wolfgang
    • Matsuoka Ayako
    • Schmid Daniel
    • Magnes Werner
    • Fischer David
    • Auster Hans Ulrich
    • Richter I.
    • Heyner Daniel
    , 2023, 2023. Studies of the region just upstream of Earth's bow shock - known as its foreshock - have revealed the presence of transient particle populations with characteristics unlike either the upstream solar wind or the downstream plasma of the magnetosheath. Instead, these ions are energized relative to the solar wind population according to the geometry between the local shock and the interplanetary magnetic field (IMF). Recently, Glass et al. (2023) detailed the first ion observations in the foreshock at the planet Mercury, using data from the Fast Imaging Plasma Spectrometer (FIPS), which flew aboard NASA's Mercury Surface, Space Environment, Geochemistry, and Ranging (MESSENGER) spacecraft. On 23 June 2022, the two docked spacecraft of the joint ESA-JAXA BepiColombo mission made their second flyby of Mercury (MFB2), which was also the first in which the Mercury Plasma Particle Experiment (MPPE) suite was fully operational. During MFB2, MPPE's Mass Spectrum Analyzer (MSA) (Hadid et al., in preparation) made extensive observations of Mercury's foreshock region starting at the outbound shock crossing and continuing through altitudes of well over 14,000 km. We will present our investigations of BepiColombo-MSA foreshock data in detail, including comparison with corollary MESSENGER-FIPS events and new analysis of Mercury's foreshock at significant distance upstream of its bow shock using magnetic field tracing.
  • Dynamics of Low-Energy Ions in Mercury's Magnetosphere: Results From BepiColombo Mio's First Three Flybys
    • Harada Yuki
    • Saito Yoshifumi
    • Aizawa Sae
    • Hadid Lina
    • André Nicolas
    • Persson Moa
    • Delcourt Dominique
    • Fraenz Markus
    • Yokota Shoichiro
    • Fedorov Andrei
    • Miyake Wataru
    • Penou Emmanuel
    • Barthe Alain
    • Savaud Jean-André
    • Katra Bruno
    • Matsuda Shoya
    • Murakami Go
    , 2023, 2023. Located close to the Sun, Mercury's magnetosphere is driven by the strong solar wind forcing. To investigate the workings of Mercury's magnetosphere that are yet to be fully understood, JAXA's Mio spacecraft (also known as Mercury Magnetospheric Orbiter) is now en route to Mercury along with the other spacecraft of the BepiColombo mission, ESA's Mercury Planetary Orbiter. As of this writing, BepiColombo has conducted three Mercury flybys, from which Mio successfully obtained brand-new plasma data in Mercury's magnetosphere despite the limited configuration of cruise phase observations. A prominent feature of the first three flyby results is that each flyby shows unique and different properties of Mercury's magnetospheric plasma even though the three flybys have generally similar geometries entering the dusk-side magnetotail and exiting the magnetosphere on the dawn-day side. Here we present results from the three flyby observations by Mio with a particular focus on the dynamics of magnetospheric ions. During the first flyby, Mio observed generally low-energy ions in Mercury's magnetosphere, displaying the presence of cold dense ions below 100 eV/q and the absence of >10 keV/q ions. On the contrary, the second flyby is characterized by relatively high-energy ions with the detection of magnetospheric ions exceeding 10 keV/q and no detectable ions below 100 eV/q. As for the third flyby, both the cold dense ions and energetic ions are observed in the magnetosphere. The measured ion fluxes often exhibit rapid and large fluctuations, suggesting small-scale spatial structures and/or fast temporal variations. We discuss the origins, transport, and dynamics of the magnetospheric ion populations by exploiting the valuable data provided by Mio so far.
  • Suitability of Moment Methods to Model the Ion Dynamics in a Low-Temperature Plasma
    • Berger Anatole
    • Lequette Nicolas
    • Magin Thierry
    • Bourdon Anne
    • Laguna Alejandro Alvarez
    , 2024. We present a study of the suitability of several moment methods to capture the ion dynamics in a bounded non-equilibrium lowtemperature plasma between two electrically-floating walls under different pressure regimes. We use a set of kinetic simulations in order to study the properties of one-dimensional five-moment (1D 5M) closures. We discuss on the advantages and disadvantages of some of the most common moment methods: Grad's closure, the quadrature method of moments (QMOM), the extended QMOM (EQMOM) and maximum entropy. For this study, we analyse the capability of each closure to capture the dynamics of the closing flux and its ability to retrieve the distribution function. The results show that the accuracy of each model largely depends on the pressure regime. In general, all the considered methods behave rather fine at high pressure and exhibit different challenges in order to represent the low-pressure regime.
  • Linking Edge Flows to the Magnetic Geometry Asymmetry in Tokamaks
    • Rienäcker S
    • Vermare L
    • Hennequin P
    • Honoré C
    • Coda S
    • Labit B
    • Frassinetti L
    • Vincent B
    • Agostini M
    • Matina M La
    • Ugoletti M
    • Balestri A
    • Manas P
    • Panico O
    , 2024, pp.P3-047. (10.1088/1741)
    DOI : 10.1088/1741
  • Generic low-atmosphere signatures of swirled-anemone jets
    • Joshi Reetika
    • Aulanier Guillaume
    • Radcliffe Alice
    • Rouppe van der Voort Luc
    • Pariat Etienne
    • Nóbrega-Siverio Daniel
    • Schmieder Brigitte
    Astronomy & Astrophysics - A&A, EDP Sciences, 2024, 687, pp.A172. Context. Solar jets are collimated plasma flows moving along magnetic field lines and are accelerated at low altitude following magnetic reconnection. Several of them originate from anemone-shaped low-lying arcades, and the most impulsive ones tend to be relatively wider and display untwisting motions. Aims. We aim to establish typical behaviours and observational signatures in the low atmosphere that can occur in response to the coronal development of such impulsive jets. Methods. We analysed an observed solar jet associated with a circular flare ribbon using high-resolution observations from SST coordinated with IRIS and SDO. We related specifically identified features with those developing in a generic 3D line-tied numerical simulation of reconnection-driven jets performed with the ARMS code. Results. We identified three features in the SST observations: the formation of a hook along the circular ribbon, the gradual widening of the jet through the apparent displacement of its kinked edge towards (and not away) from the presumed reconnection site, and the falling back of some of the jet plasma towards a footpoint offset from that of the jet itself. The 3D numerical simulation naturally accounts for these features, which were not imposed a priori. Our analyses allowed us to interpret them in the context of the 3D geometry of the asymmetric swirled-anemone loops and their sequences of reconnection with ambient coronal loops. Conclusions. Given the relatively simple conditions in which the observed jet occurred, together with the generic nature of the simulation that comprised minimum assumptions, we predict that the specific features that we identified and interpreted are probably typical of every impulsive jet. (10.1051/0004-6361/202449553)
    DOI : 10.1051/0004-6361/202449553
  • Whistler-mode waves in the tail of Mercury’s magnetosphere: A numerical study
    • Ballerini Giulio
    • Lavorenti Federico
    • Califano Francesco
    • Henri Pierre
    Astronomy & Astrophysics - A&A, EDP Sciences, 2024, 687, pp.A204. Context. Mercury presents a highly dynamic, small magnetosphere in which magnetic reconnection plays a fundamental role.Aim. We aim to model the global characteristics of magnetic reconnection in the Hermean environment. In particular, we focus on waves observed during the third BepiColombo flyby.Method. In this work, we used two fully kinetic three-dimensional (3D) simulations carried out with the iPIC3D code, which models the interaction of the solar wind with the Hermean magnetosphere. For the simulations, we used southward solar wind conditions that allow for a maximum magnetic coupling between the solar wind and the planet.Results. Our simulations show that a significant wave activity, triggered by magnetic reconnection, develops near the diffusion region in the magnetotail and propagates at large scales in the night-side magnetosphere. We see an increase in electron temperature close to the diffusion region and we specifically observe narrowband whistler waves developing near the reconnection region. These waves propagate nearly parallel to the magnetic field at frequency f ∼ 0.5fce. In addition to the electromagnetic component, these waves also exhibit an electrostatic one. Furthermore, we observe a strong electron temperature anisotropy, suggesting it plays a role as the source of these waves. (10.1051/0004-6361/202349093)
    DOI : 10.1051/0004-6361/202349093
  • Strategies for enhanced accuracy in 1D fluid simulation of Hall thruster IEPC-2024-377
    • Petronio Federico
    • Laguna Alejandro Alvarez
    • Bourdon Anne
    • Chabert Pascal
    • Esteves Benjamin
    , 2024.
  • Self-consistent collisional closures for high-order fluid moment models with the electron inertial terms
    • Alvarez Laguna A.
    • Hara Kentaro
    , 2024. Most of the fluid models for electrons in a partially-ionized plasma consider the electrons as having a small drift with respect to the other species. In this paper, we study a non-linear moment model based on a Hermitian expansion that considers 14 scalar fields (density, momentum, pressure tensor, heat-flux vector, and kurtosis). The main collisional processes in a partially-ionized plasma are taken into account (elastic collisions with electrons, ions and gas atoms, excitation and ionization collisions), by considering the electrons to have a velocity that is arbitrarily high with respect to the other species. The collisional exchanges are integrated analytically in a self-consistent manner with a non-equilibrium distribution function. We discuss about the validity of the drift-diffusion approximation by comparing two-term Boltzmann solutions to Monte-Carlo collision simulations. Finally, we compare our moment model to Monte-Carlo collision simulation under high electric fields, where the drift-diffusion approximation fails. The closure moment model can be applied to lowpressure discharges with high electric fields, where the electron inertial terms and the non-equilbrium effects may play an important role.
  • Connecting Solar Wind Velocity Spikes Measured by Solar Orbiter and Coronal Brightenings Observed by SDO
    • Hou Chuanpeng
    • Rouillard Alexis
    • He Jiansen
    • Gannouni Bahaeddine
    • Réville Victor
    • Louarn Philippe
    • Fedorov Andrey
    • Přech Lubomír
    • Owen Christopher
    • Verscharen Daniel
    • D’amicis Raffaella
    • Sorriso-Valvo Luca
    • Fargette Naïs
    • Coburn Jesse
    • Génot Vincent
    • Raines Jim
    • Bruno Roberto
    • Livi Stefano
    • Lavraud Benoit
    • André Nicolas
    • Fruit Gabriel
    • Kieokaew Rungployphan
    • Plotnikov Illya
    • Penou Emmanuel
    • Barthe Alain
    • Kataria Dhiren
    • Berthomier Matthieu
    • Allegrini Frederic
    • Fortunato Vito
    • Mele Gennaro
    • Horbury Timothy
    The Astrophysical Journal Letters, Bristol : IOP Publishing, 2024, 968 (2), pp.L28. The Parker Solar Probe's discovery that magnetic switchbacks and velocity spikes in the young solar wind are abundant has prompted intensive research into their origin(s) and formation mechanism(s) in the solar atmosphere. Recent studies, based on in situ measurements and numerical simulations, argue that velocity spikes are produced through interchange magnetic reconnection. Our work studies the relationship between interplanetary velocity spikes and coronal brightenings induced by changes in the photospheric magnetic field. Our analysis focuses on the characteristic periodicities of velocity spikes detected by the Proton Alpha Sensor on the Solar Orbiter during its fifth perihelion pass. Throughout the time period analyzed here, we estimate their origin along the boundary of a coronal hole. Around the boundary region, we identify periodic variations in coronal brightening activity observed by the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory. The spectral characteristics of the time series of in situ velocity spikes, remote coronal brightenings, and remote photospheric magnetic flux exhibit correspondence in their periodicities. Therefore, we suggest that the localized small-scale magnetic flux within coronal holes fuels a magnetic reconnection process that can be observed as slight brightness augmentations and outward fluctuations or jets. These dynamic elements may act as mediators, bonding magnetic reconnection with the genesis of velocity spikes and magnetic switchbacks. (10.3847/2041-8213/ad4eda)
    DOI : 10.3847/2041-8213/ad4eda