Partager

Publications

Publications

2022 | 2021 | 2020 | 2019

Sont listées ci-dessous, par année, les publications figurant dans l'archive ouverte HAL.

2014

  • The double well mass filter
    • Gueroult R
    • Fisch Nathaniel J.
    • Rax Jean-Marcel
    Physics of Plasmas, American Institute of Physics, 2014, 21 (2), pp.020701. Various mass filter concepts based on rotating plasmas have been suggested with the specific purpose of nuclear waste remediation. We report on a new rotating mass filter combining radial separation with axial extraction. The radial separation of the masses is the result of a “double-well” in effective radial potential in rotating plasma with a sheared rotation profile. (10.1063/1.4864325)
    DOI : 10.1063/1.4864325
  • Oxidation of isopropanol and acetone adsorbed on TiO<SUB>2</SUB> under plasma generated ozone flow: Gas phase and adsorbed species monitoring
    • Barakat Christelle
    • Gravejat Paul
    • Guaitella Olivier
    • Thévenet Frédéric
    • Rousseau Antoine
    Applied Catalysis B: Environmental, Elsevier, 2014, 147, pp.302-313. The regeneration of isopropanol (IPA) and/or acetone saturated TiO2 surface by ozone is investigated. TiO2 catalyst is placed downstream a dielectric barrier discharge and is subsequently exposed to ozone considered as the main oxidative species generated by non-thermal plasma and able to interact with the material surface at room temperature. The oxidation of isopropanol and/or acetone is monitored using two parallel and complementary infrared diagnostics: (1) Fourier Transform Infrared Spectroscopy for the analysis of the gas phase composition; and (2) Diffuse Reflectance Infrared Fourier Transform Spectroscopy for the in situ analysis of the adsorbent/catalyst surface. In this study, the pollutant is first adsorbed on the TiO2 surface, the plasma being switched off. The irreversibly adsorbed amounts of isopropanol and acetone have been respectively quantified as 5.3 &#956;mol/m2 and 1.9 &#956;mol/m2. In a second step, the plasma is switched on to regenerate the surface by mineralization of the adsorbed organic species. A 70-min plasma phase, with approximately 20 ppm of ozone constantly flowing through the adsorbent bed yields 8.5 nmol and 8.9 nmol of CO2 per injected joule of energy for isopropanol and acetone saturated surfaces, respectively. Acetone has been evidenced as the main oxidation intermediate of isopropanol on TiO2 surface. It has been proven that the complete oxidation of isopropanol and acetone is mainly limited by the acetone oxidation rate. Competitive adsorption on the surface of the catalyst between both compounds has been studied. Results obtained are compared with those observed in the photocatalytic oxidation of the same species. (10.1016/j.apcatb.2013.09.008)
    DOI : 10.1016/j.apcatb.2013.09.008
  • A radio-frequency sheath model for complex waveforms
    • Turner M.M.
    • Chabert Pascal
    Applied Physics Letters, American Institute of Physics, 2014, 104 (16), pp.164102. Plasma sheaths driven by radio-frequency voltages occur in contexts ranging from plasma processing to magnetically confined fusion experiments. An analytical understanding of such sheaths is therefore important, both intrinsically and as an element in more elaborate theoretical structures. Radio-frequency sheaths are commonly excited by highly anharmonic waveforms, but no analytical model exists for this general case. We present a mathematically simple sheath model that is in good agreement with earlier models for single frequency excitation, yet can be solved for arbitrary excitation waveforms. As examples, we discuss dual-frequency and pulse-like waveforms. The model employs the ansatz that the time-averaged electron density is a constant fraction of the ion density. In the cases we discuss, the error introduced by this approximation is small, and in general it can be quantified through an internal consistency condition of the model. This simple and accurate model is likely to have wide application. (10.1063/1.4872172)
    DOI : 10.1063/1.4872172
  • A nanosecond surface dieletric barrier discharge in air at high pressure and different polarities of applied pulses. Transition to filamentary mode
    • Stepanyan S.A.
    • Starikovskiy a Yu
    • Popov N.A.
    • Starikovskaia Svetlana
    Plasma Sources Science and Technology, IOP Publishing, 2014, 23 (4), pp.045003. The development of a nanosecond surface dielectric barrier discharge in air at pressures 16 bar is studied. At atmospheric pressure, the discharge develops as a set of streamers starting synchronously from the high-voltage electrode and propagating along the dielectric layer. Streamers cover the dielectric surface creating a 'quasi-uniform' plasma layer. At high pressures and high voltage amplitudes on the cathode, filamentation of the discharge is observed a few nanoseconds after the discharge starts. Parameters of the observed 'streamers-to-filaments' transition are measured; physics of transition is discussed on the basis of theoretical estimates and numerical modeling. Ionization-heating instability on the boundary of the cathode layer is suggested as a mechanism of filamentation. (10.1088/0963-0252/23/4/045003)
    DOI : 10.1088/0963-0252/23/4/045003
  • Ionospheric disturbance dynamo associated to a coronal hole: Case study of 5-10 April 2010
    • Fathy Ibrahim
    • Amory-Mazaudier Christine
    • Fathy A.
    • Mahrous A. M.
    • Yumoto K.
    • Ghamry E.
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2014, 119 (5), pp.4120–4133. In this paper we study the planetary magnetic disturbance during the magnetic storm occurring on 5 April 2010 associated with high-speed solar wind stream due to a coronal hole following a coronal mass ejection. We separate the magnetic disturbance associated to the ionospheric disturbance dynamo (Ddyn) from the magnetic disturbance associated to the prompt penetration of magnetospheric electric field (DP2). This event exhibits different responses of ionospheric disturbance dynamo in the different longitude sectors (European-African, Asian, and American). The strongest effect is observed in the European-African sector. The Ddyn disturbance reduces the amplitude of the daytime H component at low latitudes during four consecutive days in agreement with the Blanc and Richmond's model of ionospheric disturbance dynamo. The amplitude of Ddyn decreased with time during the 4 days. We discuss its diverse worldwide effects. The observed signature of magnetic disturbance process in specific longitude sector is strongly dependent on which Earth's side faces the magnetic storms (i.e., there is a different response depending on which longitude sector is at noon when the SSC hits). Finally, we determined an average period of 22 h for Ddyn using wavelet analysis. (10.1002/2013JA019510)
    DOI : 10.1002/2013JA019510
  • Experimental characterization of plasma formation and shockwave propagation induced by high power pulsed underwater electrical discharge
    • Claverie Alain
    • Deroy Julien
    • Boustié Michel
    • Avrillaud Gilles
    • Chuvatin Alexandre S.
    • Mazanchenko Ekaterina
    • Demol G.
    • Dramane B.
    Review of Scientific Instruments, American Institute of Physics, 2014, 85 (06), pp.063701. High power pulsed electrical discharges into liquids are investigated for new industrial applications based on the efficiency of controlled shock waves. We present here new experimental data obtained by combination of detailed high speed imaging equipments. It allows the visualization of the very first instants of plasma discharge formation, and then the pulsations of the gaseous bubble with an accurate timing of events. The time history of the expansion/compression of this bubble leads to an estimation of the energy effectively transferred to water during the discharge. Finally, the consecutive shock generation driven by this pulsating bubble is optically monitored by shadowgraphs and schlieren setup. These data provide essential information about the geometrical pattern and chronometry associated with the shock wave generation and propagation. (10.1063/1.4879715)
    DOI : 10.1063/1.4879715
  • Investigation of drift velocity effects on the EDGE and SOL transport.
    • Leybros Robin
    • Bufferand H.
    • Ciraolo G.
    • Fedorczak N.
    • Ghendrih Ph.
    • Hennequin Pascale
    • Marandet Y.
    • Serre E.
    • Schwander F.
    • Tamain P.
    , 2014.
  • Propagation of lower-band whistler-mode waves in the outer Van Allen belt: Systematic analysis of 11 years of multi-component data from the Cluster spacecraft
    • Santolík O.
    • Macusova E.
    • Kolmasova Ivana
    • Cornilleau-Wehrlin Nicole
    • Conchy Y.
    Geophysical Research Letters, American Geophysical Union, 2014, 41, pp.2729-2737. Lower-band whistler-mode emissions can influence the dynamics of the outer Van Allen radiation belts. We use 11&#8201;years of measurements of the STAFF-SA instruments onboard the four Cluster spacecraft to systematically build maps of wave propagation parameters as a function of position. We determine probability distributions of wave vector angle weighted by the wave intensity. The results show that wave vector directions of intense waves are close to a Gaussian-shaped peak centered on the local magnetic field line. The width of this peak is between 10 and 20 degrees. The cumulative percentage of oblique waves is below 1015%. This result is especially significant for an important class of whistler-mode emissions of lower-band chorus at higher latitudes, well outside their source region, where a simple ray tracing model fails and another mechanism is necessary to keep the wave vectors close to the field-aligned direction. (10.1002/2014GL059815)
    DOI : 10.1002/2014GL059815
  • Electron heating in capacitively coupled plasmas revisited
    • Lafleur Trevor
    • Chabert Pascal
    • Booth Jean-Paul
    Plasma Sources Science and Technology, IOP Publishing, 2014, 23 (3), pp.035010. We revisit the problem of electron heating in capacitively coupled plasmas (CCPs), and propose a method for quantifying the level of collisionless and collisional heating in plasma simulations. The proposed procedure, based on the electron mechanical energy conservation equation, is demonstrated with particle-in-cell simulations of a number of single and multi-frequency CCPs operated in regimes of research and industrial interest. In almost all cases tested, the total electron heating is comprised of collisional (ohmic) and pressure heating parts. This latter collisionless component is in qualitative agreement with the mechanism of electron heating predicted from the recent re-evaluation of theoretical models. Finally, in very electrically asymmetric plasmas produced in multi-frequency discharges, we observe an additional collisionless heating mechanism associated with electron inertia. (10.1088/0963-0252/23/3/035010)
    DOI : 10.1088/0963-0252/23/3/035010
  • Ambipolar and non-ambipolar diffusion in an rf plasma source containing a magnetic filter
    • Lafleur Trevor
    • Aanesland Ane
    Physics of Plasmas, American Institute of Physics, 2014, 21, pp.063510. By placing a magnetic filter across a rectangular plasma source (closed at one end with a ceramic plate and an rf antenna, and terminated at the opposite end by a grounded grid), we experimentally investigate the effect of conducting and insulating source walls on the nature of the plasma diffusion phenomena. The use of a magnetic filter creates a unique plasma, characterized by a high upstream electron temperature (Teu&#8764;5 eV) near the rf antenna and a low downstream electron temperature (Ted&#8764;1 eV) near the grid, which more clearly demonstrates the role of the source wall materials. For conducting walls a net ion current to ground is measured on the grid, and the plasma potential is determined by a mean electron temperature within the source. For insulating walls the plasma potential is determined by the downstream electron temperature (i.e., Vp&#8764;5.2Ted in argon), and the net current to the grid is exactly zero. Furthermore, by inserting a small additional upstream conductor (that can be made floating or grounded through an external circuit switch), we demonstrate that the plasma potential can be controlled and set to a low (Vp&#8764;5.2Ted), or high (Vp&#8764;5.2Teu) value. (10.1063/1.4885109)
    DOI : 10.1063/1.4885109
  • Surface deactivation of vibrationally excited N<SUB>2</SUB> studied using infrared titration combined with quantum cascade laser absorption spectroscopy
    • Marinov Daniil
    • Lopatik D.
    • Guaitella Olivier
    • Ionikh Y.
    • Röpcke J.
    • Rousseau Antoine
    Journal of Physics D: Applied Physics, IOP Publishing, 2014, 47 (1), pp.015203. The wall de-excitation probability of vibrationally excited nitrogen molecules was determined using infrared (IR) titration with CO, CO 2 and N 2 O. Gas mixtures of N 2 with 0.05?0.5% of CO (CO 2 or N 2 O) were excited by a pulsed dc discharge at p = 133 Pa in a cylindrical discharge tube. During the afterglow, the vibrational relaxation of titrating molecules was monitored in situ with quantum cascade laser absorption spectroscopy. The value of was deduced from measured vibrational relaxation times using a model of vibrational kinetics in N 2 . It was found that adsorption of IR tracers on the surface may increase the value of by a factor up to two, depending on the molecule and the surface material. It was demonstrated that N 2 O is the most inert and reliable tracer and it was used for the determination of on silica, Pyrex, TiO 2 , Al 2 O 3 and anodized aluminum. Pretreatment of the silica surface by low-pressure plasma was found to have a strong effect on the vibrational de-excitation. Values of measured after O 2 , Ar and N 2 plasma pretreatment of the same silica discharge tube were 5.7 × 10 ?4 , 8.2 × 10 ?4 and 11 × 10 ?4 , respectively. This study clearly demonstrates that the presence of adsorbed atoms and molecules on the surface may significantly alter the value of . (10.1088/0022-3727/47/1/015203)
    DOI : 10.1088/0022-3727/47/1/015203
  • Plasma composition and ion acceleration in the PEGASES thruster
    • Renaud D.
    • Mazouffre S.
    • Aanesland Ane
    Space Propulsion, 2014 (2969109).
  • Pulsed discharges in a wide density range: plasma development and media excitation
    • Starikovskaia Svetlana
    • Starikovskii A.Yu.
    , 2014. The Chapter demonstrates the peculiarities of pulsed nonequilibrium plasma generation in different media by nano- and picosecond high-voltage discharges. Fast ionization waves in long tubes at low pressures, streamers and dielectric barrier discharges at moderate and atmospheric pressures, surface dielectric barrier discharges at elevated pressures are considered. Special attention is given to start of picoseconds and nanosecond discharges in liquid media. The data used were consciously restricted to ICCD fast imaging of picoseconds and nanosecond discharges, to underline the dynamics of pulsed discharge development and the importance of spatial distribution of the discharge energy.
  • CLUSTER-STAFF search coil magnetometer calibration - comparisons with FGM
    • Robert Patrick
    • Cornilleau-Wehrlin Nicole
    • Piberne Rodrigue
    • de Conchy Y.
    • Lacombe C.
    • Bouzid V.
    • Grison B.
    • Alison Dominique
    • Canu Patrick
    Geoscientific Instrumentation, Methods and Data Systems, European Geosciences Union, 2014, 3, pp.153-177. The main part of the Cluster Spatio-Temporal Analysis of Field Fluctuations (STAFF) experiment consists of triaxial search coils allowing the measurements of the three magnetic components of the waves from 0.1 Hz up to 4 kHz. Two sets of data are produced, one by a module to filter and transmit the corresponding waveform up to either 10 or 180 Hz (STAFF-SC), and the second by the onboard Spectrum Analyser (STAFF-SA) to compute the elements of the spectral matrix for five components of the waves, 3 × B and 2 × E (from the EFW experiment), in the frequency range 8 Hz to 4 kHz. In order to understand the way the output signals of the search coils are calibrated, the transfer functions of the different parts of the instrument are described as well as the way to transform telemetry data into physical units across various coordinate systems from the spinning sensors to a fixed and known frame. The instrument sensitivity is discussed. Cross-calibration inside STAFF (SC and SA) is presented. Results of cross-calibration between the STAFF search coils and the Cluster Fluxgate Magnetometer (FGM) data are discussed. It is shown that these cross-calibrations lead to an agreement between both data sets at low frequency within a 2% error. By means of statistics done over 10 yr, it is shown that the functionalities and characteristics of both instruments have not changed during this period. (10.5194/gi-3-153-2014)
    DOI : 10.5194/gi-3-153-2014
  • Comment on "Micronewton electromagnetic thruster
    • Lafleur Trevor
    Applied Physics Letters, American Institute of Physics, 2014, 105, pp.146101. ... (10.1063/1.4897967)
    DOI : 10.1063/1.4897967
  • Les débris spatiaux : le revers de l'ère spatiale
    • Aanesland Ane
    • Grondein Pascaline
    Flash X - La revue scientifique de l'Ecole polytechnique, Ecole polytechnique, 2014 (16), pp.12.
  • Theory and Modeling for the Magnetospheric Multiscale Mission
    • Hesse Michael
    • Aunai Nicolas
    • Birn Joachim
    • Cassak P.
    • Denton R.~e.
    • Drake J. F.
    • Gombosi Tamas I.
    • Hoshino M.
    • Matthaeus W.
    • Sibeck David G.
    • Zenitani Seiji
    Space Science Reviews, Springer Verlag, 2014. The Magnetospheric Multiscale (MMS) mission will provide measurement capabilities, which will exceed those of earlier and even contemporary missions by orders of magnitude. MMS will, for the first time, be able to measure directly and with sufficient resolution key features of the magnetic reconnection process, down to the critical electron scales, which need to be resolved to understand how reconnection works. Owing to the complexity and extremely high spatial resolution required, no prior measurements exist, which could be employed to guide the definition of measurement requirements, and consequently set essential parameters for mission planning and execution. Insight into expected details of the reconnection process could hence only been obtained from theory and modern kinetic modeling. This situation was recognized early on by MMS leadership, which supported the formation of a fully integrated Theory and Modeling Team (TMT). The TMT participated in all aspects of mission planning, from the proposal stage to individual aspects of instrument performance characteristics. It provided and continues to provide to the mission the latest insights regarding the kinetic physics of magnetic reconnection, as well as associated particle acceleration and turbulence, assuring that, to the best of modern knowledge, the mission is prepared to resolve the inner workings of the magnetic reconnection process. The present paper provides a summary of key recent results or reconnection research by TMT members. (10.1007/s11214-014-0078-y)
    DOI : 10.1007/s11214-014-0078-y
  • Electron energy distributions in a magnetized inductively coupled plasma
    • Song Sang-Heon
    • Yang Yang
    • Chabert Pascal
    • Kushner M.J.
    Physics of Plasmas, American Institute of Physics, 2014, 21 (9), pp.093512. Optimizing and controlling electron energy distributions (EEDs) is a continuing goal in plasma materials processing as EEDs determine the rate coefficients for electron impact processes. There are many strategies to customize EEDs in low pressure inductively coupled plasmas (ICPs), for example, pulsing and choice of frequency, to produce the desired plasma properties. Recent experiments have shown that EEDs in low pressure ICPs can be manipulated through the use of static magnetic fields of sufficient magnitudes to magnetize the electrons and confine them to the electromagnetic skin depth. The EED is then a function of the local magnetic field as opposed to having non-local properties in the absence of the magnetic field. In this paper, EEDs in a magnetized inductively coupled plasma (mICP) sustained in Ar are discussed with results from a two-dimensional plasma hydrodynamics model. Results are compared with experimental measurements. We found that the character of the EED transitions from non-local to local with application of the static magnetic field. The reduction in cross-field mobility increases local electron heating in the skin depth and decreases the transport of these hot electrons to larger radii. The tail of the EED is therefore enhanced in the skin depth and depressed at large radii. Plasmas densities are non-monotonic with increasing pressure with the external magnetic field due to transitions between local and non-local kinetics. (10.1063/1.4896711)
    DOI : 10.1063/1.4896711
  • Observational evidence of electron pitch angle scattering driven by ECH waves
    • Kurita S.
    • Miyoshi Y.
    • Cully C. M.
    • Angelopoulos V.
    • Le Contel Olivier
    • Hikishima M.
    • Misawa H.
    Geophysical Research Letters, American Geophysical Union, 2014. Using the plasma wave and electron data obtained from Time History of Events and Macroscale Interactions during Substorms, we show a signature of electron pitch angle scattering driven by Electrostatic Cyclotron Harmonic (ECH) waves in the velocity distribution function (VDF). The diffusion curve of whistler mode waves is used as a proxy to identify changes in VDFs due to wave-particle interactions. We confirm that the shape of the VDF well agrees with the diffusion curve of whistler mode waves when whistler mode chorus alone is active. On the other hand, we find that the shape of the VDF deviates from the diffusion curves at low pitch angles when ECH waves are active following the inactivation of chorus waves. The result is observational support for electron pitch angle scattering caused by ECH waves and suggests that ECH waves can contribute to generation of diffuse auroras. (10.1002/2014GL061927)
    DOI : 10.1002/2014GL061927
  • Quantified energy dissipation rates in the terrestrial bow shock: 1. Analysis techniques and methodology
    • Wilson Iii L. B.
    • Sibeck David G.
    • Breneman A. W.
    • Le Contel Olivier
    • Cully C. M.
    • Turner D. L.
    • Angelopoulos V.
    • Malaspina D. M.
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2014, 119 (8), pp.6455-6474. We present a detailed outline and discussion of the analysis techniques used to compare the relevance of different energy dissipation mechanisms at collisionless shock waves. We show that the low-frequency, quasi-static fields contribute less to ohmic energy dissipation, (-j·E), than their high-frequency counterparts. In fact, we found that high-frequency, large-amplitude (>100 mV/m and/or >1 nT) waves are ubiquitous in the transition region of collisionless shocks. We quantitatively show that their fields, through wave-particle interactions, cause enough energy dissipation to regulate the global structure of collisionless shocks. The purpose of this paper, part one of two, is to outline and describe in detail the background, analysis techniques, and theoretical motivation for our new results presented in the companion paper. The companion paper presents the results of our quantitative energy dissipation rate estimates and discusses the implications. Together, the two manuscripts present the first study quantifying the contribution that high-frequency waves provide, through wave-particle interactions, to the total energy dissipation budget of collisionless shock waves. (10.1002/2014JA019929)
    DOI : 10.1002/2014JA019929
  • E x B shear pattern formation by radial propagation of heat flux waves
    • Kosuga Y.
    • Diamond P.H.
    • Dif-Pradalier Guilhem
    • Gürcan Özgür D.
    Physics of Plasmas, American Institute of Physics, 2014, 21 (5). A novel theory to describe the formation of E x B flow patterns by radially propagating heat flux waves is presented. A model for heat avalanche dynamics is extended to include a finite delay time between the instantaneous heat flux and the mean flux, based on an analogy between heat avalanche dynamics and traffic flow dynamics. The response time introduced here is an analogue of the drivers' response time in traffic dynamics. The microscopic foundation for the time delay is the time for mixing of the phase space density. The inclusion of the finite response time changes the model equation for avalanche dynamics from Burgers equation to a nonlinear telegraph equation. Based on the telegraph equation, the formation of heat flux jams is predicted. The growth rate and typical interval of jams are calculated. The connection of the jam interval to the typical step size of the E x B staircase is discussed. (C) 2014 AIP Publishing LLC. (10.1063/1.4872018)
    DOI : 10.1063/1.4872018
  • Numerical simulations used for a validity check on the laser induced photo-detachment diagnostic method in electronegative plasmas
    • Oudini N.
    • Taccogna F.
    • Bendib A.
    • Aanesland Ane
    Physics of Plasmas, American Institute of Physics, 2014, 21 (6), pp.063515. Laser photo-detachment is used as a method to measure or determine the negative ion density and temperature in electronegative plasmas. In essence, the method consists of producing an electropositive channel (negative ion free region) via pulsed laser photo-detachment within an electronegative plasma bulk. Electrostatic probes placed in this channel measure the change in the electron density. A second pulse might be used to track the negative ion recovery. From this, the negative ion density and temperature can be determined. We study the formation and relaxation of the electropositive channel via a two-dimensional Particle-In-Cell/Mote Carlo collision model. The simulation is mainly carried out in a Hydrogen plasma with an electronegativity of &#945;&#8201;=&#8201;1, with a parametric study for &#945; up to 20. The temporal and spatial evolution of the plasma potential and the electron densities shows the formation of a double layer (DL) confining the photo-detached electrons within the electropositive channel. This DL evolves into two fronts that move in the opposite directions inside and outside of the laser spot region. As a consequence, within the laser spot region, the background and photo-detached electron energy distribution function relaxes/thermalizes via collisionless effects such as Fermi acceleration and Landau damping. Moreover, the simulations show that collisional effects and the DL electric field strength might play a non-negligible role in the negative ion recovery within the laser spot region, leading to a two-temperature negative ion distribution. The latter result might have important effects in the determination of the negative ion density and temperature from laser photo detachment diagnostic. (10.1063/1.4886144)
    DOI : 10.1063/1.4886144
  • Radiation from mixed multi-planar wire arrays
    • Safronova Alla S.
    • Kantsyrev Viktor L.
    • Esaulov A. A.
    • Chuvatin Alexandre S.
    • Weller Michael E.
    • Shlyaptseva V. V.
    • Shrestha Ishor
    • Keim S. F.
    • Stafford A.
    • Coverdale C. A.
    • Apruzese J. P.
    • Ouart N. D.
    • Giuliani J. L.
    Physics of Plasmas, American Institute of Physics, 2014, 21 (03), pp.031205. The study of radiation from different wire materials in wire array Z-pinch plasma is a very challenging topic because it is almost impossible to separate different plasmas at the stagnation. A new approach is suggested based on planar wire array (PWA) loads to assess this problem. Multi-planar wire arrays are implemented that consist of few planes, each with the same number of wires and masses but from different wire materials, arranged in parallel rows. In particular, the experimental results obtained with triple PWAs (TPWAs) on the UNR Zebra generator are analyzed with Wire Ablation Dynamics Model, non-local thermodynamic equilibrium kinetic model, and 2D radiation magneto-hydrodynamic to illustrate this new approach. In TPWAs, two wire planes were from mid-atomic-number wire material and another plane was from alloyed Al, placed either in the middle or at the edge of the TPWA. Spatial and temporal properties of K-shell Al and L-shell Cu radiations were analyzed and compared from these two configurations of TPWAs. Advantages of the new approach are demonstrated and future work is discussed. (10.1063/1.4864335)
    DOI : 10.1063/1.4864335
  • Helicon plasma thruster discharge model
    • Lafleur Trevor
    Physics of Plasmas, American Institute of Physics, 2014, 21, pp.043507. By considering particle, momentum, and energy balance equations, we develop a semi-empirical quasi one-dimensional analytical discharge model of radio-frequency and helicon plasma thrusters. The model, which includes both the upstream plasma source region as well as the downstream diverging magnetic nozzle region, is compared with experimental measurements and confirms current performance levels. Analysis of the discharge model identifies plasma power losses on the radial and back wall of the thruster as the major performance reduction factors. These losses serve as sinks for the input power which do not contribute to the thrust, and which reduce the maximum plasma density and hence propellant utilization. With significant radial plasma losses eliminated, the discharge model (with argon) predicts specific impulses in excess of 3000&#8201;s, propellant utilizations above 90%, and thruster efficiencies of about 30%. (10.1063/1.4871727)
    DOI : 10.1063/1.4871727
  • Experimental validation of the dual positive and negative ion beam acceleration in the plasma propulsion with electronegative gases thruster
    • Rafalskyi D.V.
    • Popelier Lara
    • Aanesland Ane
    Journal of Applied Physics, American Institute of Physics, 2014, 115 (5), pp.053301. The PEGASES (Plasma Propulsion with Electronegative Gases) thruster is a gridded ion thruster, where both positive and negative ions are accelerated to generate thrust. In this way, additional downstream neutralization by electrons is redundant. To achieve this, the thruster accelerates alternately positive and negative ions from an ion-ion plasma where the electron density is three orders of magnitude lower than the ion densities. This paper presents a first experimental study of the alternate acceleration in PEGASES, where SF6 is used as the working gas. Various electrostatic probes are used to investigate the source plasma potential and the energy, composition, and current of the extracted beams. We show here that the plasma potential control in such system is key parameter defining success of ion extraction and is sensitive to both parasitic electron current paths in the source region and deposition of sulphur containing dielectric films on the grids. In addition, large oscillations in the ion-ion plasma potential are found in the negative ion extraction phase. The oscillation occurs when the primary plasma approaches the grounded parts of the main core via sub-millimetres technological inputs. By controlling and suppressing the various undesired effects, we achieve perfect ion-ion plasma potential control with stable oscillation-free operation in the range of the available acceleration voltages (±350&#8201;V). The measured positive and negative ion currents in the beam are about 10&#8201;mA for each component at RF power of 100&#8201;W and non-optimized extraction system. Two different energy analyzers with and without magnetic electron suppression system are used to measure and compare the negative and positive ion and electron fluxes formed by the thruster. It is found that at alternate ion-ion extraction the positive and negative ion energy peaks are similar in areas and symmetrical in position with /&#8722; ion energy corresponding to the amplitude of the applied acceleration voltage. (10.1063/1.4863876)
    DOI : 10.1063/1.4863876