Partager

Publications

Publications

2022 | 2021 | 2020 | 2019

Sont listées ci-dessous, par année, les publications figurant dans l'archive ouverte HAL.

2013

  • Building small scales in MHD turbulence
    • Verdini Andrea
    • Grappin Roland
    • Pinto Rui
    • Velli Marco
    , 2013, 1539, pp.74-77. Magneto-hydrodynamic turbulence (MHD) with a mean large-scale field is known to produce an anisotropic cascade, with energy mostly in perpendicular scales. We use a shell-model version of the Reduced MHD equations to simulate turbulence in homogeneous periodic conditions, in coronal loops, and in the solar wind. We compare the perpendicular and parallel spectra and show that different regimes of weak turbulence develop in loops and in the solar wind. We briefly comment on the way their characteristic large-scale features influence the weak turbulence spectra and their transition to strong turbulence. (10.1063/1.4810993)
    DOI : 10.1063/1.4810993
  • Goniopolarimetry with Coupled Electric and Magnetic Measurements
    • Cecconi B.
    • Gautier A.-L.
    • Bergman J.E.S
    • Chust Thomas
    • Marchaudon A.
    • Cavoit C.
    • Santolík O.
    , 2013.
  • On the origin of the quasi-perpendicular ion foreshock: Full-particle simulations
    • Savoini Philippe
    • Lembège Bertrand
    • Stienlet J.
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2013, 118 (3), pp.1132-1145. Many space missions have already evidenced the existence of the ion foreshock region located upstream of the Earth's bow shock and populated by energetic backstreaming ions reflected by the shock front. In order to analyse this region, a curved shock is simulated with a 2-D particle-in-cell (PIC) code. The analysis is presently restricted to the quasi-perpendicular angular range defined by 45° ≤ θBn ≤ 90°. In agreement with experimental data, present results evidence two distinct ion populations back-streaming from the shock front along the interplanetary magnetic field: (i) the Field-Aligned Beam population (hereafter "FAB") and (ii) the gyrophase bunched population (hereafter "GPB") which differ from each other by their gyrotropic or non-gyrotropic behavior, respectively. Excluded by a simulation time which is too short, ion instabilities pitch-angle scattering cannot be the source of "GPB". Two new criteria are proposed to identify more precisely each population: their interaction time Δtint with the shock front and their downstream penetration depth. These criteria show that (i) the "FAB" population moves back and forth between the upstream edge of the shock front and the overshoot, and is characterized by a Δtint covering several upstream gyro-periods. (ii) In contrast, the "GPB" ions suffer a short interaction time (i.e. 1 < τci). We observe that the "FAB" ions may have different originsalthough all "GPB" ions seem to be produced by the electrostatic field built up at the shock and are emitted in a burst-like mode rather than in continuous way. (10.1002/jgra.50158)
    DOI : 10.1002/jgra.50158
  • Various Coiled Magnetoimpedance Based on Differential Magnetic Permeability Variation
    • Moutoussamy Joël
    • Coillot C.
    • Chanteur Gérard
    • Alves Francisco
    Sensor letters, American Scientific Publishers, 2013, 11 (1), pp.40-43. The present work is focused on high sensitivity (5000 V/T) transverse coiled GMI transducers manufactured with various magnetic materials, magnetically excited at low frequencies (f < 50 kHz) by an insulated coil which is also used for the measurement of the DC and low frequency magnetic field. The impedance and the sensitivity of different types of ferromagnetic material as nanocrystalline ribbons (Finemet) annealed under longitudinal and transverse magnetic fields, as mumetal ribbons and Mn–Zn thin ferrite core are investigated with respect to the static magnetic field. From these results, the differential magnetic permeability is approximated in order to predict sensitivity behavior in relation to the anisotropy magnetic field and the magnitude and the frequency of current excitation. (10.1166/sl.2013.2800)
    DOI : 10.1166/sl.2013.2800
  • A spectroscopic study of ethylene destruction and by-product generation using a three-stage atmospheric packed-bed plasma reactor
    • Hubner Antoine
    • Guaitella Olivier
    • Rousseau Antoine
    • Roepcke J.
    Journal of Applied Physics, American Institute of Physics, 2013, 114, pp.033301. Using a three-stage dielectric packed-bed plasma reactor at atmospheric pressure, the destruction of ethylene, a typical volatile organic compound, and the generation of major by-products have been studied by means of Fourier Transform Infrared Spectroscopy. A test gas mixture air at a gas flow of 1 slm containing 0.12% humidity with 0.1% ethylene has been used. In addition to the fragmentation of the precursor gas, the evolution of the concentration of ten stable reaction products, CO, CO2, O3, NO2, N2O, HCN, H2O, HNO3, CH2O, and CH2O2 has been monitored. The concentrations of the by-products range between 5&#8201;ppm, in the case of NO2, and 1200&#8201;ppm, for H2O. By the application of three sequentially working discharge cells at a frequency of f&#8201;=&#8201;4 kHz and voltage values between 9 and 12&#8201;kV, a nearly complete decomposition of C2H4 could be achieved. Furthermore, the influence of the specific energy deposition (SED) on the destruction process has been studied and the maximum value of SED was about 900 J l&#8722;1. The value of the characteristic energy &#946;, characterizing the energy efficiency of the ethylene destruction in the reactor, was found to be 330 J l&#8722;1. It was proven that the application of three reactor stages suppresses essentially the production of harmful by-products as formaldehyde, formic acid, and NO2 compared to the use of only one or two stages. Based on the multi-component detection, the carbon balance of the plasma chemical conversion of ethylene has been analyzed. The dependence of the fragmentation efficiencies of ethylene (RF(C2H4)&#8201;=&#8201;5.5&#8201;×&#8201;1019 molecules J&#8722;1) and conversion efficiencies to the produced molecular species (RC&#8201;=&#8201;(0.13)&#8201;×&#8201;1016 molecules J&#8722;1) on the discharge conditions could be estimated in the multistage plasma reactor. (10.1063/1.4813409)
    DOI : 10.1063/1.4813409
  • Anisotropy of radiation emitted from planar wire arrays
    • Kantsyrev Viktor L.
    • Chuvatin Alexandre S.
    • Esaulov A. A.
    • Safronova Alla S.
    • Rudakov Leonid I.
    • Velikovich A. L.
    • Williamson Kenneth M.
    • Osborne Glenn C.
    • Shrestha I. K.
    • Weller Michael E.
    • Shlyaptseva V. V.
    Physics of Plasmas, American Institute of Physics, 2013, 20 (07), pp.070702. The planar wire array (PWA) is a promising load for new multi-source inertial confinement fusion (ICF) hohlraums [B. Jones et al. Phys. Rev. Lett. 104 125001 (2010)]. The hohlraum radiation symmetry is an important issue for ICF. It was found that extreme ultraviolet and sub-keV photon emission from PWAs may have considerable anisotropy in the load azimuthal plane. This experimental result is obtained on the UNR 11.7 MA Zebra generator. The time-dependent anisotropy effect is detected. This feature is studied in 2D numerical simulations and can be explained by initial anisotropy of implosion of those non-cylindrical loads radiating essentially as surface sources in sub-keV quanta and also by radiation absorption in cold magnetized plasma tails forming in the direction of magnetic compression. (10.1063/1.4817023)
    DOI : 10.1063/1.4817023
  • Physics of Stimulated L->H Transitions
    • Miki K.
    • Diamond P.H.
    • Hahn S. -H.
    • Xiao W. W.
    • Gürcan Özgür D.
    • Tynan G.R.
    Physical Review Letters, American Physical Society, 2013, 110, pp.195002. We report on model studies of stimulated L&#8594;H transitions. These studies use a novel reduced mesoscale model. Studies reveal that L&#8594;H transitions can be triggered by particle injection into a subcritical state (i.e., P<PThresh). Particle injection alters the edge mean flow shear via changes of density and temperature gradients. The change of edge mean flow shear is critical to turbulence collapse and the subsequent stimulated transition. For low ambient heating, strong injection is predicted to trigger a transient turbulence collapse. We predict that repetitive injection can maintain the turbulence collapse and so sustain a driven H-mode-like state. The total number of particles required to induce a transition by either injection or gas puffing is estimated. Results indicate that the total number of injected particles required is much smaller than that required for inducing a transition by gas puffing. Thus, we show that internal injection is more efficient than gas puffing of comparable strength. We also observe that zonal flows do not play a critical role in stimulated transitions. (10.1103/PhysRevLett.110.195002)
    DOI : 10.1103/PhysRevLett.110.195002
  • Direct observation of ozone formation on SiO<SUB>2</SUB> surfaces in O<SUB>2</SUB> discharges
    • Marinov Daniil
    • Guaitella Olivier
    • Booth Jean-Paul
    • Rousseau Antoine
    Journal of Physics D: Applied Physics, IOP Publishing, 2013, 46, pp.032001. Ozone production is studied in a pulsed O2 discharge at pressures in the range 1.36.7 mbar. Time-resolved absolute concentrations of O3 and O are measured in the post-discharge using UV absorption spectroscopy and two-photon absorption laser-induced fluorescence. In a bare silica discharge tube ozone is formed mainly by three-body gas-phase recombination. When the tube surface is covered by a high specific surface silica catalyst heterogeneous formation becomes the main source of ozone. The efficiency of this surface process increases with O2 pressure and is favoured by the presence of OH groups and adsorbed H2O on the surface. At p = 6.7 mbar ozone production accounts for up to 25% of the atomic oxygen losses on the surface. (10.1088/0022-3727/46/3/032001)
    DOI : 10.1088/0022-3727/46/3/032001
  • Cavitation in the vicinity of the high-voltage electrode as a key step of nanosecond breakdown in liquids
    • Marinov Ilya
    • Guaitella Olivier
    • Rousseau Antoine
    • Starikovskaia Svetlana
    Plasma Sources Science and Technology, IOP Publishing, 2013, 22, pp.042001. Fast shadowgraphy of nanosecond discharge in liquids with different dielectric permittivity, namely in water, ethanol and n-pentane, has been performed. Formation of a gas cavity at a nanosecond time scale was observed as a pre-breakdown phenomenon at amplitudes of the high-voltage pulse close to the breakdown threshold. This phenomenon is considered as a possible key step of high-voltage breakdown in polar liquids. (10.1088/0963-0252/22/4/042001)
    DOI : 10.1088/0963-0252/22/4/042001
  • On the supply of heavy planetary material to the magnetotail of Mercury
    • Delcourt Dominique C.
    Annales Geophysicae, European Geosciences Union, 2013, 31 (10), pp.1673-1679. We examine the transport of low-energy heavy ions of planetary origin (O + , Na + , Ca +) in the magneto-sphere of Mercury. We show that, in contrast to Earth, these ions are abruptly energized after ejection into the magneto-sphere due to enhanced curvature-related parallel acceleration. Regardless of their mass-to-charge ratio, the parallel speed of these ions is rapidly raised up to ∼ 2 V E×B (denoting by V E×B the magnitude of the local E × B drift speed), in a like manner to Fermi-type acceleration by a moving magnetic mirror. This parallel energization is such that ions with very low initial energies (a few tenths of eVs) can overcome gravity and, regardless of species or convection rate, are transported over comparable distances into the night-side magnetosphere. The region of space where these ions reach the magnetotail is found to extend over altitudes similar to those where enhanced densities are noticeable in the MESSENGER data, viz., from ∼ 1000 km up to ∼ 6000 km in the pre-midnight sector. The observed density enhancements may thus follow from E × B related focusing of planetary material of dayside origin into the magnetotail. Due to the planetary magnetic field offset, an asymmetry is found between drift paths anchored in the Northern and Southern hemispheres, which puts forward a predominant role of heavy material originating in the Northern Hemisphere in populating the innermost region of Mercury's magnetotail. (10.5194/angeo-31-1673-2013)
    DOI : 10.5194/angeo-31-1673-2013
  • Remote sensing of a NTC radio source from a Cluster tilted spacecraft pair
    • Décréau Pierrette
    • Kougblénou S.
    • Lointier G.
    • Rauch Jean-Louis
    • Trotignon Jean-Gabriel
    • Vallières X.
    • Canu Patrick
    • Rochel Grimald S.
    • El-Lemdani Mazouz Farida
    • Darrouzet F.
    Annales Geophysicae, European Geosciences Union, 2013, 31 (11), pp.2097-2121. The Cluster mission operated a "tilt campaign" during the month of May 2008. Two of the four identical Cluster spacecraft were placed at a close distance (~50 km) from each other and the spin axis of one of the spacecraft pair was tilted by an angle of ~46°. This gave the opportunity, for the first time in space, to measure global characteristics of AC electric field, at the sensitivity available with long boom (88 m) antennas, simultaneously from the specific configuration of the tilted pair of satellites and from the available base of three satellites placed at a large characteristic separation (~1 RE). This paper describes how global characteristics of radio waves, in this case the configuration of the electric field polarization ellipse in 3-D-space, are identified from in situ measurements of spin modulation features by the tilted pair, validating a novel experimental concept. In the event selected for analysis, non-thermal continuum (NTC) waves in the 15-25 kHz frequency range are observed from the Cluster constellation placed above the polar cap. The observed intensity variations with spin angle are those of plane waves, with an electric field polarization close to circular, at an ellipticity ratio e = 0.87. We derive the source position in 3-D by two different methods. The first one uses ray path orientation (measured by the tilted pair) combined with spectral signature of magnetic field magnitude at source. The second one is obtained via triangulation from the three spacecraft baseline, using estimation of directivity angles under assumption of circular polarization. The two results are not compatible, placing sources widely apart. We present a general study of the level of systematic errors due to the assumption of circular polarization, linked to the second approach, and show how this approach can lead to poor triangulation and wrong source positioning. The estimation derived from the first method places the NTC source region in the dawn sector, at a large L value (L ~ 10) and a medium geomagnetic latitude (35° S). We discuss these untypical results within the frame of the geophysical conditions prevailing that day, i.e. a particularly quiet long time interval, followed by a short increase of magnetic activity. (10.5194/angeo-31-2097-2013)
    DOI : 10.5194/angeo-31-2097-2013
  • Plasma/surface interaction: example of air plasmas and plasma bullets
    • Guaitella Olivier
    , 2013.
  • Theory of a Strip Loop Antenna Located on the Surface of an Axially Magnetized Plasma Column
    • Kudrin A. V.
    • Zaitseva Anna S
    • Zaboronkova T. M.
    • Krafft C.
    • Kyriacou George A
    Progress In Electromagnetics Research B, EMW Publishing, 2013, 51, pp.221--246. We study the current distribution and input impedance of a circular loop antenna in the form of an infinitesimally thin, perfectly conducting narrow strip coiled into a ring. The antenna is located on the surface of an axially magnetized plasma column surrounded by a homogeneous isotropic medium. The current in the antenna is excited by a time-harmonic voltage creating an electric field with the azimuthal component in a gap of small angular opening on the strip surface. The emphasis is placed on the solution of the integral equations for the azimuthal harmonics of the antenna current in the case where the magnetoplasma inside the column is nonresonant. The properties of the kernels of the integral equations are discussed and the current distribution in the antenna is obtained. It is shown that the presence of a magnetized plasma column can significantly influence the electrodynamic characteristics of the antenna compared with the case where it is located in the surrounding medium or a homogeneous plasma medium the parameters of which coincide with those inside the column. (10.2528/PIERB13032304)
    DOI : 10.2528/PIERB13032304
  • Space Research in Africa. Some Achievements from 2007 to 2012
    • Amory-Mazaudier Christine
    • Fleury Rolland
    Sun and Geosphere, BBC SWS Regional Network, 2013, 2 (8), pp.65-70. This article presents the results of a research network Europe Africa established in 1995 after the International Electrojet Equatorial Year (1992-1994). During the last decade, this research network has been involved in two international projects: the International Heliophysical Year (2007-2009) and International Space Weather Initiative (2010-2012).The participation in these international projects increased the number of PhD and multiplied the number of scientific papers. Many scientific results have been obtained. Teaching and working methods have been also developed. We emphasize in this article the last two points.
  • Influence of the dissipation mechanism on collisionless magnetic reconnection in symmetric and asymmetric current layers
    • Aunai Nicolas
    • Hesse Michael
    • Black Carrie
    • Evans Rebekah
    • Kuznetsova M. M.
    Physics of Plasmas, American Institute of Physics, 2013, 20, pp.2901. Numerical studies implementing different versions of the collisionless Ohm's law have shown a reconnection rate insensitive to the nature of the non-ideal mechanism occurring at the X line, as soon as the Hall effect is operating. Consequently, the dissipation mechanism occurring in the vicinity of the reconnection site in collisionless systems is usually thought not to have a dynamical role beyond the violation of the frozen-in condition. The interpretation of recent studies has, however, led to the opposite conclusion that the electron scale dissipative processes play an important dynamical role in preventing an elongation of the electron layer from throttling the reconnection rate. This work re-visits this topic with a new approach. Instead of focusing on the extensively studied symmetric configuration, we aim to investigate whether the macroscopic properties of collisionless reconnection are affected by the dissipation physics in asymmetric configurations, for which the effect of the Hall physics is substantially modified. Because it includes all the physical scales a priori important for collisionless reconnection (Hall and ion kinetic physics) and also because it allows one to change the nature of the non-ideal electron scale physics, we use a (two dimensional) hybrid model. The effects of numerical, resistive, and hyper-resistive dissipation are studied. In a first part, we perform simulations of symmetric reconnection with different non-ideal electron physics. We show that the model captures the already known properties of collisionless reconnection. In a second part, we focus on an asymmetric configuration where the magnetic field strength and the density are both asymmetric. Our results show that contrary to symmetric reconnection, the asymmetric model evolution strongly depends on the nature of the mechanism which breaks the field line connectivity. The dissipation occurring at the X line plays an important role in preventing the electron current layer from elongating and forming plasmoids. (10.1063/1.4795727)
    DOI : 10.1063/1.4795727
  • Isopropanol saturated TiO<SUB>2</SUB> surface regeneration by non-thermal plasma : Influence of air relative humidity
    • Sivachandiran Loganathan
    • Thévenet Frédéric
    • Gravejat Paul
    • Rousseau Antoine
    Chemical Engineering Journal, Elsevier, 2013, 214, pp.17-26. Environmental regulation on air quality requires the development of energetic efficient volatile organic compounds (VOCs) abatement techniques. Adsorption, photocatalysis, non-thermal plasma and their combinations have been widely studied for VOC treatment. Even if the plasma material (sorbent or catalyst) association appears as one of the most efficient configuration for VOC removal, it mainly consists in operating continuously the discharge on the material surface as long as the effluent flows across the reactor. This work aims at investigating another approach of plasma material association for VOC removal: in a first step, the material is used as a sorbent until the complete coverage of adsorption sites; in a second step, once VOC saturation is achieved, the discharge is ignited on the material surface. During both steps, the influence of air relative humidity (RH) is investigated in order to evaluate its impact on the process. The objectives of our approach are: (i) the reduction of energy consumption; (ii) the increase of sorbent life-times by efficient regeneration; (iii) the investigation of plasma interaction with VOC saturated materials; (iv) the investigation of air RH influence on such VOC treatment process. A packed bed reactor coated with TiO2 has been designed. IPA is used as a model VOC. First, injected power in the packed-bed reactor is characterized as a function of air RH. Complete coverage of TiO2 surface over 35% RH is suggested as a significant parameter. Then, adsorption of IPA on TiO2 was monitored until IPA breakthrough. The amount of IPA adsorbed per TiO2 surface unit is compared to values reported by other authors. The influence of air RH on reversibly and irreversibly adsorbed IPA fractions is investigated. Over 35% RH irreversible adsorption is favored, adsorption modes are discussed. Plasma regeneration of IPA saturated TiO2 surface leads simultaneously to IPA desorption and mineralization. Increasing air RH favors IPA mineralization and diminishes acetone production. Carbon balance obtained after 1 h plasma treatment reaches 91% in the presence of 50% RH. A thermal treatment is performed after each plasma treatment in order to evidence plasma insensitive adsorbed species and to restore TiO2 initial surface state. 97% of the carbon balance is collected under 50% RH after thermal treatment. During the thermal step, acetone and CO2 are mainly produced, their formation pathways are discussed. (10.1016/j.cej.2012.10.022)
    DOI : 10.1016/j.cej.2012.10.022
  • Dynamics of tilted eddies in a transversal flow at the edge of tokamak plasmas and the consequences for L-H transition
    • Fedorczak N.
    • Ghendrih Philippe
    • Hennequin Pascale
    • Tynan G.R.
    • Diamond P.H.
    • Manz P.
    Plasma Physics and Controlled Fusion, IOP Publishing, 2013, 55 (12), pp.124024. The dynamical interaction between eddies and shear flow is investigated through a simplified model of vorticity conservation with tilted eddies. Energy is transferred either to the flow or to eddies, depending on the eddy tilt with respect to the flow shear. When eddies are tilted in the shear direction, the system is favorable to shear increase: tilt instability (TI) or the negative viscosity phenomenon. When eddies are tilted in the opposite direction, the shear flow is damped via a Kelvin-Helmholtz (KH) process. The TI generally dominates the interaction on the largest radial scale, but a fraction of the energy cascades to smaller radial scales through the alternation of tilting and KH dynamics. Within this eddy description, we show that the symmetry breaking required to generate a net residual stress is set by the intrinsic eddy tilt. We recall that magnetic shear can provide an intrinsic tilt to ballooning modes at the edge of tokamak plasmas, with an orientation which depends on flux surface geometry. In L-mode weak shear regimes, this residual stress can dominate the Reynolds stress. Coupled to momentum sources acting in the scrape-off layer, it can induce a significant difference of the edge radial electric field between lower single null and upper single null geometries. A comparison with experimental profiles measured across the edge of Tore Supra L-mode plasmas is discussed. (10.1088/0741-3335/55/12/124024)
    DOI : 10.1088/0741-3335/55/12/124024
  • Radio-frequency capacitively coupled plasmas excited by tailored voltage waveforms: comparison of experiment and particle-in-cell simulations
    • Delattre Pierre-Alexandre
    • Lafleur Trevor
    • Johnson Erik
    • Booth Jean-Paul
    Journal of Physics D: Applied Physics, IOP Publishing, 2013, 46, pp.235201. Using a range of different diagnostics we have performed a detailed experimental characterization of a capacitively coupled rf plasma discharge excited by tailored voltage waveforms in argon (3?13 Pa). The applied pulse-type tailored waveforms consist of between 1 and 5 harmonics (with a fundamental of 15 MHz), and are used to generate an electrically asymmetric plasma response, manifested by the formation of a strong dc bias in the geometrically symmetric reactor used. Experimental measurements of the dc bias, electron density, ion current density, ion-flux energy distributions at the electrodes and discharge current waveforms, are compared with a one-dimensional particle-in-cell simulation for the same operating conditions. The experimental and simulation results are found to be in good agreement over the range of parameters investigated, and demonstrate a number of unique features present with pulse-type tailored waveforms, including: increased plasma density and ion flux with the number of harmonics, and a broader control range of the ion bombarding energy. (10.1088/0022-3727/46/23/235201)
    DOI : 10.1088/0022-3727/46/23/235201
  • Negative ion extraction from hydrogen plasma bulk
    • Oudini N.
    • Taccogna F.
    • Minelli P.
    • Aanesland Ane
    • Raimbault Jean-Luc
    Physics of Plasmas, American Institute of Physics, 2013, 20 (10), pp.103506. A two-dimensional particle-in-cell/Monte Carlo collision model has been developed and used to study low electronegative magnetized hydrogen plasma. A configuration characterized by four electrodes is used: the left electrode is biased at Vl&#8201;=&#8201;&#8722;100&#8201;V, the right electrode is grounded, while the upper and lower transversal electrodes are biased at an intermediate voltage Vud between 0 and &#8722;100&#8201;V. A constant and homogeneous magnetic field is applied parallel to the lateral (left/right) electrodes. It is shown that in the magnetized case, the bulk plasma potential is close to the transversal electrodes bias inducing then a reversed sheath in front of the right electrode. The potential drop within the reversed sheath is controlled by the transversal electrodes bias allowing extraction of negative ions with a significant reduction of co-extracted electron current. Furthermore, introducing plasma electrodes, between the transversal electrodes and the right electrode, biased with a voltage just above the plasma bulk potential, increases the negative ion extracted current and decreases significantly the co-extracted electron current. The physical mechanism on basis of this phenomenon has been discussed. (10.1063/1.4825246)
    DOI : 10.1063/1.4825246
  • ECH effects on toroidal rotation: KSTAR experiments, intrinsic torque modelling and gyrokinetic stability analyses
    • Shi Y. J.
    • Ko W. H.
    • Kwon J.M.
    • Diamond P.H.
    • Lee S. G.
    • Ko S. H.
    • Wang L.
    • Yi Sukyoung
    • Ida K.
    • Terzolo L.
    • Yoon S. W.
    • Lee K. D.
    • Lee J. H.
    • Nam U. N.
    • Bae Y. S.
    • Oh Y. K.
    • Kwak J. G.
    • Bitter M.
    • Hill K.
    • Gürcan Özgür D.
    • Hahm T.S.
    Nuclear Fusion, IOP Publishing, 2013, 53 (11). Toroidal rotation profiles have been investigated in KSTAR H-mode plasma using combined auxiliary heating by co-neutral beam injection (NBI) and electron cyclotron resonance heating (ECH). The ion temperature and toroidal rotation are measured with x-ray imaging crystal spectroscopy and charge exchange recombination spectroscopy. H-mode plasma is achieved using co-current 1.3MW NBI, and a 0.35MW ECH pulse is added to the flat-top of H-mode. The core rotation profiles, which are centrally peaked in the pure NBI heating phase, flatten when ECH is injected, while the edge pedestal is unchanged. Dramatic decreases in the core toroidal rotation values (Delta V-tor/V-tor similar to -30%) are observed when on-axis ECH is added to H-mode. The experimental data show that the decrease of core rotation velocity and its gradient are correlated with the increase of core electron temperature and its gradient, and also with the likely steepening of the density gradient. We thus explore the viability of a hypothesized ITG (ITG ion temperature gradient instability) -> TEM (trapped electron mode instability) transition as the explanation of the observed counter-current flow induced by ECH. However, the results of linear microstability analyses using inferred profiles suggest that the TEM is excited only in the deep core, so the viability of the hypothesized explanation is not yet clear. (10.1088/0029-5515/53/11/113031)
    DOI : 10.1088/0029-5515/53/11/113031
  • Interaction of plasma transport and turbulence on particle fuelling
    • Tamain Patrick
    • Bonhomme Gérard
    • Brochard Frédéric
    • Clairet Frédéric
    • Gil C.
    • Gunn J.
    • Hennequin P.
    • Hornung G.
    • Segui J. L.
    • Vermare L.
    • Ghendrih Philippe
    • Team Tore Supra
    Journal of Nuclear Materials, Elsevier, 2013, 438 (S), pp.S148-S154. We report the results of an experimental investigation of the impact of Supersonic Molecular Beam Injection in the Tore Supra tokamak. Several diagnostics were synchronised with the injection to extract a global picture of the physics at play from the time scale of turbulence (similar to 10 mu s) to the full-recovery time (similar to 1 s). As previously reported, a strong impact of the injection on density and temperature profiles is observed. Both fields exhibit a complex dynamic response involving different phases and time scales. In particular, we show that the effective particle fuelling efficiency is determined by a period of degraded confinement that follows the injection, during which the edge density collapses, in some cases, lower than the initial one. This phase is characterised by a dramatic change in the turbulent transport, with a drop of the frequency spectrum and the observation of large coherent structures as opposed to small intermittent fluctuations before the injection. (10.1016/j.jnucmat.2013.01.023)
    DOI : 10.1016/j.jnucmat.2013.01.023
  • Structures of dayside whistler-mode waves deduced from conjugate diffuse aurora
    • Nishimura Y.
    • Bortnik J.
    • Li W.
    • Thome R.M.
    • Ni B.
    • Lyons L.R.
    • Angelopoulos V.
    • Ebihara Y.
    • Bonnell J. W.
    • Le Contel Olivier
    • Auster U.
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2013, 118 (2), pp.664-673. [1] We present simultaneous measurements of dayside diffuse aurora and whistler-mode waves made by the South Pole all-sky imager and two of the THEMIS spacecraft. We found a high correlation between the diffuse aurora intensity at 557.7&#8201;nm near the footprint latitudes of THEMIS and whistler-mode wave intensity measured on board. The power in other wave modes was negligibly small in most cases, indicating that the dayside diffuse aurora is driven by precipitating energetic electrons resonating with whistler-mode waves. The high correlation over a wide L* range (6&#8201;<&#8201;L*&#8201;<&#8201;11) further allowed us to magnetically link the wave and magnetospheric plasma distributions with the auroral patterns. Two distinct regions of whistler-mode waves and ambient plasma density were found outside the plasmasphere near the equator: (1) intense waves in a smooth, low density and (2) moderate waves with enhanced and fluctuating density. The whistler-mode wave intensity in the fluctuating plasma density region is positively correlated with the ambient density variations. The corresponding auroral images show an azimuthally elongated diffuse auroral band on the field lines connected to the low density region, as opposed to a structured diffuse aurora on the fluctuating density field lines. Each structured diffuse auroral patch was stable for a few tens of minutes and slowly drifted azimuthally. The high correlation of waves and auroras indicates that the structured diffuse auroral pattern reflects the spatial distribution of whistler-mode waves and ambient plasma density in space. The enhanced density measured by the spacecraft is quasi-spatial and contributes to enhanced growth of whistler-mode waves. (10.1029/2012JA018242)
    DOI : 10.1029/2012JA018242
  • Statistical properties of planetary heavy-ion precipitations toward the Martian ionosphere obtained from Mars Express
    • Hara T.
    • Seki K.
    • Futaana Y.
    • Yamauchi M.
    • Barabash S.
    • Fedorov A. O.
    • Yagi M.
    • Delcourt Dominique C.
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2013, 118 (8), pp.5348-5357. The interplanetary magnetic field (IMF) embedded in the solar wind interacts with the Martian crustal magnetic field and atmosphere. The IMF orientation is one of the important parameters to control the acceleration and precipitation of planetary heavy ions (PHIs). We statistically investigate the effects of the IMF orientation on PHI precipitations toward the ionosphere based on observations by Mars Express (MEX). We identified 59 PHI precipitation events between July 2007 and September 2009. To estimate the IMF orientation without magnetometer that MEX does not carry, we used the velocity distribution of exospheric-origin pickup protons. We estimated the IMF orientation without its polarity for 10 events. The results show that the precipitations of PHIs tend to be observed around pole regions in the MSE (Mars-centered, solar electrical) coordinates determined from the solar wind electric field (Esw), in which the pole axis directs to the parallel or antiparallel to Esw due to the ambiguity in the IMF polarity determination. The observed precipitating PHIs are accelerated only up to a few keV. This feature may reflect the short distance from the picked-up region. For one of these 10 events, we estimated the IMF polarity by comparing the velocity distribution of exospheric-origin pickup protons observed by MEX with those obtained from statistical trajectory tracing simulations under two cases of possible IMF polarity conditions. The estimated polarity indicates that the PHI precipitation in this event is observed in the downward electric field hemisphere in MSE, where Esw points to Mars in the pole region. (10.1002/jgra.50494)
    DOI : 10.1002/jgra.50494
  • Theory for the self-bias formation in capacitively coupled plasmas excited by arbitrary waveforms
    • Lafleur Trevor
    • Chabert Pascal
    • Turner M.M.
    • Booth Jean-Paul
    Plasma Sources Science and Technology, IOP Publishing, 2013, 22 (6), pp.065013. We develop a semi-analytical theory for the self-bias formation in capacitively coupled plasmas excited by arbitrary radio-frequency (rf) waveforms. The requirement of rf current continuity and voltage balance across the discharge results in the need for a self-bias voltage to develop with non-sinusoidal excitations, even in geometrically symmetric systems. The theory is compared extensively with a wide range of experimental and particle-in-cell (PIC) simulation data within the literature, and is found to be in excellent agreement. Furthermore, it is shown that the present theory is formally equivalent to the original model proposed by Heil et al (2008 J. Phys. D: Appl. Phys. 41 165202), but goes further by explicitly allowing the time-varying sheath voltages and symmetry parameter to be evaluated without input from PIC simulations. (10.1088/0963-0252/22/6/065013)
    DOI : 10.1088/0963-0252/22/6/065013
  • Simulation benchmarks for low-pressure plasmas: Capacitive discharges
    • Turner M.M.
    • Derzsi A.
    • Donkó Z.
    • Eremin D.
    • Kelly S.J.
    • Lafleur Trevor
    • Mussenbrock T.
    Physics of Plasmas, American Institute of Physics, 2013, 20, pp.013507. Benchmarking is generally accepted as an important element in demonstrating the correctness of computer simulations. In the modern sense, a benchmark is a computer simulation result that has evidence of correctness, is accompanied by estimates of relevant errors, and which can thus be used as a basis for judging the accuracy and efficiency of other codes. In this paper, we present four benchmark cases related to capacitively coupled discharges. These benchmarks prescribe all relevant physical and numerical parameters. We have simulated the benchmark conditions using five independently developed particle-in-cell codes. We show that the results of these simulations are statistically indistinguishable, within bounds of uncertainty that we define. We, therefore, claim that the results of these simulations represent strong benchmarks, which can be used as a basis for evaluating the accuracy of other codes. These other codes could include other approaches than particle-in-cell simulations, where benchmarking could examine not just implementation accuracy and efficiency, but also the fidelity of different physical models, such as moment or hybrid models. We discuss an example of this kind in the Appendix. Of course, the methodology that we have developed can also be readily extended to a suite of benchmarks with coverage of a wider range of physical and chemical phenomena. (10.1063/1.4775084)
    DOI : 10.1063/1.4775084