Share

Publications

Publications

2022 | 2021 | 2020 | 2019

Below, by year, are the publications listed in the HAL open archive.

2018

  • Logarithmically discretized model of bounce averaged gyrokinetics and its implications on tokamak turbulence
    • Xu S.
    • Morel Pierre
    • Gürcan Özgür D.
    Physics of Plasmas, American Institute of Physics, 2018, 25 (10), pp.102306. A logarithmically discretized model, which consists of writing the system in log polar coordinates in wave-number domain and reducing the nonlinear interactions to a sum over neighboring scales that satisfy the triad conditions, is proposed for bounce averaged gyrokinetics, where the energy dependence is kept over a semi-regular grid that allows quadrature calculations in order to guarantee quasi-neutrality. The resulting model is a cheaper implementation of nonlinear multi-scale physics involving trapped electron modes, trapped ion modes, and zonal flows, which can handle anisotropy. The resulting wave-number spectrum is anisotropic at large scales, where the energy injection is clearly anisotropic, but is isotropised rapidly, leading generally towards an isotropic k−4 spectrum for spectral potential energy density for fully kinetic system and a k−5 spectrum for the system with one adiabatic species. Zonal flow damping, which is necessary for reaching a steady state in this model, plays an important role along with electron adiabaticity. Interesting dynamics akin to predator-prey evolution is observed among zonal flows and similarly large scale but radially elongated structures. (10.1063/1.5049681)
    DOI : 10.1063/1.5049681
  • Living on mars: how to produce oxygen and fuel to get home
    • Guerra V.
    • Silva Tiago
    • Guaitella Olivier
    Europhysics News, EDP Sciences, 2018, 49 (3), pp.15-18. Sending a manned mission to Mars is one of the next major steps in space exploration. Creating a breathable environment, however, is a substantial challenge. A sustainable oxygen supply on the red planet can be achieved by converting carbon dioxide directly from the Martian atmosphere. A new solution to do so is on the way: plasma technology. (10.1051/epn/2018302)
    DOI : 10.1051/epn/2018302
  • Higher-Order Turbulence Statistics in the Earth's Magnetosheath and the Solar Wind Using Magnetospheric Multiscale Observations
    • Chhiber R.
    • Chasapis A.
    • Bandyopadhyay R.
    • Parashar T. N.
    • Matthaeus W. H.
    • Maruca B. A.
    • Moore T. E.
    • Burch J. L.
    • Torbert R. B.
    • Russell C. T.
    • Le Contel Olivier
    • Argall M. R.
    • Fischer D.
    • Mirioni Laurent
    • Strangeway R. J.
    • Pollock C. J.
    • Giles B. L.
    • Gershman D. J.
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2018, 123 (12), pp.9941-9954. High-resolution multispacecraft magnetic field measurements from the Magnetospheric Multiscale mission's flux-gate magnetometer are employed to examine statistical properties of plasma turbulence in the terrestrial magnetosheath and in the solar wind. Quantities examined include wave number spectra; structure functions of order two, four, and six; probability density functions of increments; and scale-dependent kurtoses of the magnetic field. We evaluate the Taylor frozen-in approximation by comparing single-spacecraft time series analysis with direct multispacecraft measurements, including evidence based on comparison of probability distribution functions. The statistics studied span spatial scales from the inertial range down to proton and electron scales. We find agreement of spectral estimates using three different methods, and evidence of intermittent turbulence in both magnetosheath and solar wind; however, evidence for subproton-scale coherent structures, seen in the magnetosheath, is not found in the solar wind. (10.1029/2018JA025768)
    DOI : 10.1029/2018JA025768
  • Study of Ionospheric Variability Using GNSS Observations
    • Taoufiq Jouan
    • Mourad Bouziani
    • Rachid Azzouzi
    • Amory-Mazaudier Christine
    Positioning, SCIRP, 2018, 09 (04), pp.79-96. <div><p>With the increasing number of applications of Global navigation satellite system, the modeling of the ionosphere is a crucial element for precise positioning. Indeed, the ionosphere delays the electromagnetic waves which pass through it and induces a delay of propagation related to the electronic density (TEC) Total Electronic Content and to the frequency of the wave. The impact of this ionospheric error often results in a poor determination of the station's position, particularly in strong solar activity. The first part of this paper focuses on a bibliographic study oriented first of all on the study of the ionosphere in relation to solar activity and secondly on the determination of the total electron content using GNSS measurements from the IGS network reference stations. Measurements were made on two permanent stations "RABT", "TETN". We selected years of GNSS measurements to evaluate the geomagnetic impact on the ionosphere, 2001, 2009 and 2013. A description of the ionospheric disturbances and geomagnetic storms was analyzed by determination of TEC, especially in high solar activity. The results show a strong dependence of the ionospheric activity with the geomagnetic activity.</p></div> (10.4236/pos.2018.94006)
    DOI : 10.4236/pos.2018.94006
  • Observations of core ion cyclotron emission on ASDEX Upgrade tokamak
    • Ochoukov R.
    • Bobkov V.
    • Chapman B.
    • Dendy R.
    • Dunne M.
    • Faugel H.
    • García Muñoz M.
    • Geiger B.
    • Hennequin Pascale
    • Mcclements K. G.
    • Moseev D.
    • Nielsen S.
    • Rasmussen J.
    • Schneider P.
    • Weiland M.
    • Noterdaeme J.-M.
    Review of Scientific Instruments, American Institute of Physics, 2018, 89 (10), pp.10J101. The B-dot probe diagnostic suite on the ASDEX Upgrade tokamak has recently been upgraded with a new 125 MHz, 14 bit resolution digitizer to study ion cyclotron emission (ICE). While classic edge emission from the low field side plasma is often observed, we also measure waves originating from the core with fast fusion protons or beam injected deuterons being a possible emission driver. Comparing the measured frequency values with ion cyclotron harmonics present in the plasma places the origin of this emission on the magnetic axis, with the fundamental hydrogen/second deuterium cyclotron harmonic matching the observed values. The actual values range from ∼27 MHz at the on-axis toroidal field BT = -1.79 T to ∼40 MHz at BT = -2.62 T. When the magnetic axis position evolves during this emission, the measured frequency values track the changes in the estimated on-axis cyclotron frequency values. Core ICE is usually a transient event lasting ∼100 ms during the neutral beam startup phase. However, in some cases, core emission occurs in steady-state plasmas and lasts for longer than 1 s. These observations suggest an attractive possibility of using a non-perturbing ICE-based diagnostic to passively monitor fusion alpha particles at the location of their birth in the plasma core, in deuterium-tritium burning devices such as ITER and DEMO. (10.1063/1.5035180)
    DOI : 10.1063/1.5035180
  • Chemical kinetics in an atmospheric pressure helium plasma containing humidity
    • Schröter Sandra
    • Wijaikhum Apiwat
    • Gibson Andrew
    • West Andrew
    • Davies Helen
    • Minesi Nicolas
    • Dedrick James
    • Wagenaars Erik
    • de Oliveira Nelson
    • Nahon Laurent
    • Kushner Mark
    • Booth Jean-Paul
    • Niemi Kari
    • Gans Timo
    • O'Connell Deborah
    Physical Chemistry Chemical Physics, Royal Society of Chemistry, 2018, 20 (37), pp.24263-24286. a Atmospheric pressure plasmas are sources of biologically active oxygen and nitrogen species, which makes them potentially suitable for the use as biomedical devices. Here, experiments and simulations are combined to investigate the formation of the key reactive oxygen species, atomic oxygen (O) and hydroxyl radicals (OH), in a radio-frequency driven atmospheric pressure plasma jet operated in humidified helium. Vacuum ultraviolet high-resolution Fourier-transform absorption spectroscopy and ultraviolet broad-band absorption spectroscopy are used to measure absolute densities of O and OH. These densities increase with increasing H 2 O content in the feed gas, and approach saturation values at higher admixtures on the order of 3 Â 10 14 cm À3 for OH and 3 Â 10 13 cm À3 for O. Experimental results are used to benchmark densities obtained from zero-dimensional plasma chemical kinetics simulations, which reveal the dominant formation pathways. At low humidity content, O is formed from OH + by proton transfer to H 2 O, which also initiates the formation of large cluster ions. At higher humidity content, O is created by reactions between OH radicals, and lost by recombination with OH. OH is produced mainly from H 2 O + by proton transfer to H 2 O and by electron impact dissociation of H 2 O. It is lost by reactions with other OH molecules to form either H 2 O + O or H 2 O 2. Formation pathways change as a function of humidity content and position in the plasma channel. The understanding of the chemical kinetics of O and OH gained in this work will help in the development of plasma tailoring strategies to optimise their densities in applications. (10.1039/c8cp02473a)
    DOI : 10.1039/c8cp02473a
  • Reconnexion magnétique entre le vent solaire et la magnétosphère
    • Rezeau Laurence
    • Belmont Gérard
    Reflets de la Physique, EDP sciences, 2018 (59), pp.20. Dans le vent solaire, plasma et champ magnétique se déplacent ensemble à grande échelle. L'interface avec la magnétosphère terrestre est une frontière fine, la magnétopause, où il peut exister des échelles suffisamment petites pour dissocier les deux mouvements. Il en résulte un phénomène nommé "reconnexion magnétique" au cours duquel le plasma est fortement accéléré le long de la frontière. La mission MMS a des points forts qui en font le meilleur outil pour étudier ce phénomène : une résolution temporelle des mesures inégalée et des satellites très proches les uns des autres (environ 10 km, de l'ordre du rayon de Larmor des électrons). (10.1051/refdp/201859020)
    DOI : 10.1051/refdp/201859020
  • Sodium Ion Dynamics in the Magnetospheric Flanks of Mercury
    • Aizawa Sae
    • Delcourt Dominique C.
    • Terada N.
    Geophysical Research Letters, American Geophysical Union, 2018, 45, pp.595-601. We investigate the transport of planetary ions in the magnetospheric flanks of Mercury. In situ measurements from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft show evidences of Kelvin-Helmholtz instability development in this region of space, due to the velocity shear between the downtail streaming flow of solar wind originating protons in the magnetosheath and the magnetospheric populations. Ions that originate from the planet exosphere and that gain access to this region of space may be transported across the magnetopause along meandering orbits. We examine this transport using single-particle trajectory calculations in model Magnetohydrodynamics simulations of the Kelvin-Helmholtz instability. We show that heavy ions of planetary origin such as Na<SUP> </SUP> may experience prominent nonadiabatic energization as they <fi>E</fi> × <fi>B</fi> drift across large-scale rolled up vortices. This energization is controlled by the characteristics of the electric field burst encountered along the particle path, the net energy change realized corresponding to the maximum <fi>E</fi> × <fi>B</fi> drift energy. This nonadiabatic energization also is responsible for prominent scattering of the particles toward the direction perpendicular to the magnetic field. (10.1002/2017GL076586)
    DOI : 10.1002/2017GL076586
  • Comparative Study between Direct and Indirect Treatment with Cold Atmospheric Plasma on In Vitro and In Vivo Models of Wound Healing
    • Duchesne Constance
    • Frescaline Nadira
    • Lataillade Jean-Jacques
    • Rousseau Antoine
    Plasma Medicine, Begell House, 2018, 8 (4), pp.379-401. Cold-atmospheric plasma (CAP) produces a mixture of molecular, ionic, and radical species as well as electric field visible and ultraviolet lights. Biological effects of CAP and its therapeutic potential have been studied in disciplines such as dermatology, oncology, and dentistry. This study investigates both in vitro and in vivo effects of direct and indirect plasma treatment and their influences on wound healing. The effect of plasma treatment on cellular viability, migration, and proliferation are studied using keratinocytes, fibroblasts, and endothelial cells. Plasma is generated in a helium jet using an alternating-current 50-Hz power supply at 32 kV and 90 mW. Results show that 1-min direct CAP treatment stimulates skin cell migration; however, cellular proliferation remains unchanged. Treatment > 3 min leads to cell death. Using the same treatment parameters, notably exposure time, indirect treatment using a plasma-activated medium fails to stimulate cellular migration. A murine model of full-thickness excisional wound healing is used to study the effect of CAP on wound closure. In vivo studies demonstrate that both direct and indirect treatment do not affect acute wound closure in mice. Taken together, these results suggest that direct plasma treatment with homemade plasma devices has the potential to positively influence wound healing, but optimum parameters and suitable wound models must be identified and validated. (10.1615/PlasmaMed.2019028659)
    DOI : 10.1615/PlasmaMed.2019028659
  • Observations of the Electron Jet Generated by Secondary Reconnection in the Terrestrial Magnetotail
    • Huang S. Y.
    • Jiang K.
    • Yuan Z. G.
    • Sahraoui Fouad
    • He L. H.
    • Zhou M.
    • Fu H. S.
    • Deng X. H.
    • He J. S.
    • Cao D.
    • Yu X. D.
    • Wang D. D.
    • Burch J. L.
    • Pollock C. J.
    • Torbert R. B.
    The Astrophysical Journal, American Astronomical Society, 2018, 862 (2), pp.144. We report in situ observations of an electron jet generated by secondary reconnection within the outflow region of primary reconnection in the terrestrial magnetotail by the Magnetospheric Multiscale (MMS) mission. The MMS spacecraft first passed through the primary X-line and then crossed the electron jet in the outflow of primary reconnection. There are a series of small-scale flux ropes in the secondary reconnection region. Decoupling from the magnetic field for both ions and electrons, an intense out-of-plane current, unambiguous Hall currents, and a Hall electromagnetic field appear in the electron jet. Strong electron dissipation (), a nonzero electric field in the electron frame (), and electron crescent-like shaped distributions are detected in the center of the electron jet, implying that MMS spacecraft were likely passing through the electron diffusion region. The significant electron dissipation indicates that the electrons can be accelerated in the electron jet and the electron jet may be another important electron acceleration channel along with the electron diffusion region. (10.3847/1538-4357/aacd4c)
    DOI : 10.3847/1538-4357/aacd4c
  • Validation of gyrokinetic simulations with measurements of electron temperature fluctuations and density-temperature phase angles on ASDEX Upgrade
    • Freethy S. J.
    • Görler T.
    • Creely A. J.
    • Conway G. D.
    • Denk S. S.
    • Happel T.
    • Koenen C.
    • Hennequin Pascale
    • White A. E.
    Physics of Plasmas, American Institute of Physics, 2018, 25 (5), pp.055903. Measurements of turbulent electron temperature fluctuation amplitudes, dTe?=T e, frequency spectra, and radial correlation lengths, LrðT e? Þ, have been performed at ASDEX Upgrade using a newly upgraded Correlation ECE diagnostic in the range of scales k? < 1:4 cm1; k r < 3:5 cm1 (k?qs < 0:28 and k rqs < 0:7). The phase angle between turbulent temperature and density fluctuations, anT, has also been measured by using an ECE radiometer coupled to a reflectometer along the same line of sight. These quantities are used simultaneously to constrain a set of ion- scale non-linear gyrokinetic turbulence simulations of the outer core (qtor ¼ 0.75) of a low density, electron heated L-mode plasma, performed using the gyrokinetic simulation code, GENE. The ion and electron temperature gradients were scanned within uncertainties. It is found that gyrokinetic simulations are able to match simultaneously the electron and ion heat flux at this radius within the experimental uncertainties. The simulations were performed based on a reference discharge for which dT e?=T e measurements were available, and L rðTe? Þ and anT were then predicted using syn- thetic diagnostics prior to measurements in a repeat discharge. While temperature fluctuation amplitudes are overestimated by >50% for all simulations within the sensitivity scans performed, good quantitative agreement is found for L rðT e? Þ and anT. A validation metric is used to quantify the level of agreement of individual simulations with experimental measurements, and the best agreement is found close to the experimental gradient values. Published by AIP Publishing. (10.1063/1.5018930)
    DOI : 10.1063/1.5018930
  • Exact law for homogeneous compressible Hall magnetohydrodynamics turbulence
    • Andrés Nahuel
    • Galtier Sébastien
    • Sahraoui Fouad
    Physical Review E, American Physical Society (APS), 2018, 97 (1), pp.013204. We derive an exact law for three-dimensional (3D) homogeneous compressible isothermal Hall magnetohydrodynamic turbulence, without the assumption of isotropy. The Hall current is shown to introduce new flux and source terms that act at the small scales (comparable or smaller than the ion skin depth) to significantly impact the turbulence dynamics. The law provides an accurate means to estimate the energy cascade rate over a broad range of scales covering the magnetohydrodynamic inertial range and the sub-ion dispersive range in 3D numerical simulations and in in situ spacecraft observations of compressible turbulence. This work is particularly relevant to astrophysical flows in which small-scale density fluctuations cannot be ignored such as the solar wind, planetary magnetospheres, and the interstellar medium. (10.1103/PhysRevE.97.013204)
    DOI : 10.1103/PhysRevE.97.013204
  • Effect of frequency on the uniformity of symmetrical RF CCP discharges
    • Liu Yue
    • Booth Jean-Paul
    • Chabert Pascal
    Plasma Sources Science and Technology, IOP Publishing, 2018, 27 (5), pp.055012. A 2D Cartesian electrostatic particle-in-cell/Monte Carlo collision (PIC/MCC) model presented previously (Liu et al 2018 Plasma Sources Sci. Technol. 27 025006) is used to investigate the effect of the driving frequency (over the range of 15?45 MHz) on the plasma uniformity in radio frequency (RF) capacitively coupled plasma (CCP) discharges in a geometrically symmetric reactor with a dielectric side wall in argon gas. The reactor size (12 cm electrode length, 2.5 cm gap) and driving frequency are sufficiently small that electromagnetic effects can be ignored. Previously, we showed (Liu et al 2018 Plasma Sources Sci. Technol. 27 025006) that for 15 MHz excitation, Ohmic heating of electrons by the electric field perpendicular to the electrodes is enhanced in a region in front of the dielectric side wall, leading to a maximum in electron density there. In this work we show that increasing the excitation frequency (at constant applied voltage amplitude) not only increases the overall electron heating and density but also causes a stronger, narrower peak in electron heating closer to the dielectric wall, improving the plasma uniformity along the electrodes. This heating peak comes both from enhanced perpendicular electron heating and from the appearance at high frequency of significant parallel heating. The latter is caused by the presence of a significant parallel-direction RF oscillating electric field in the corners. Whereas at the reactor center the sheaths oscillate perpendicularly to the electrodes, near the dielectric edge they move in and out of the corners and must be treated in two dimensions. (10.1088/1361-6595/aabfb4)
    DOI : 10.1088/1361-6595/aabfb4
  • Anomalous electron transport in Hall-effect thrusters: Comparison between quasi-linear kinetic theory and particle-in-cell simulations
    • Lafleur Trevor
    • Martorelli Roberto
    • Chabert Pascal
    • Bourdon Anne
    Physics of Plasmas, American Institute of Physics, 2018, 25 (6), pp.061202. Kinetic drift instabilities have been implicated as a possible mechanism leading to anomalous electron cross-field transport in E B discharges, such as Hall-effect thrusters. Such instabilities, which are driven by the large disparity in electron and ion drift velocities, present a significant challenge to modelling efforts without resorting to time-consuming particle-in-cell (PIC) simulations. Here, we test aspects of quasi-linear kinetic theory with 2D PIC simulations with the aim of developing a self-consistent treatment of these instabilities. The specific quantities of interest are the instability growth rate (which determines the spatial and temporal evolution of the instability amplitude), and the instability-enhanced electron-ion friction force (which leads to anomalous electron transport). By using the self-consistently obtained electron distribution functions from the PIC simulations (which are in general non-Maxwellian), we find that the predictions of the quasilinear kinetic theory are in good agreement with the simulation results. By contrast, the use of Maxwellian distributions leads to a growth rate and electron-ion friction force that is around 24 times higher, and consequently significantly overestimates the electron transport. A possible method for self-consistently modelling the distribution functions without requiring PIC simulations is discussed (10.1063/1.5017626)
    DOI : 10.1063/1.5017626
  • Introduction à la physique des plasmas
    • Belmont Gérard
    • Rezeau Laurence
    • Riconda C.
    • Zaslavsky A.
    , 2018. Les plasmas sont peu présents dans notre environnement immédiat et leurs propriétés sont parfois ignorées des physiciens. Il sagit pourtant de phénomènes universels quon rencontre depuis les décharges électriques jusquaux jets galactiques. Lobjectif de cet ouvrage est doffrir une introduction aux phénomènes variés qui constituent la physique des plasmas avec comme seul prérequis davoir une connaissance de la physique de base. Il présente en parallèle les fondements de la théorie des plasmas et un certain nombre dapplications aux plasmas de laboratoire ou aux plasmas naturels. Un accent particulier est mis sur lexistence des plasmas sans collision, dans lesquels le comportement collectif du milieu est dû seulement au champ électromagnétique moyen qui régit les trajectoires des particules. Ceci permet de porter un regard neuf sur des notions déjà abordées dans dautres disciplines, mais aussi de comprendre les liens qui existent entre les théories fluides, en particulier pour létude de la propagation des ondes.
  • Erratum: Numerical study of the influence of surface reaction probabilities on reactive species in an rf atmospheric pressure plasma containing humidity (2017 Plasma Phys. Control. Fusion 60 014035)
    • Schröter Sandra
    • Gibson Andrew R.
    • Kushner Mark J.
    • Gans Timo
    • O'Connell Deborah
    Plasma Physics and Controlled Fusion, IOP Publishing, 2018, 60. Not Available (10.1088/1361-6587/aa9a6b)
    DOI : 10.1088/1361-6587/aa9a6b
  • Excitation and relaxation of the asymmetric stretch mode of CO<SUB>2</SUB> in a pulsed glow discharge
    • Klarenaar Bart
    • Morillo-Candas Ana-Sofia
    • Grofulovic Marija
    • Sanden Richard van De
    • Engeln Richard
    • Guaitella Olivier
    Plasma Sources Science and Technology, IOP Publishing, 2018, 28, pp.035011. The excitation and relaxation of the vibrations of CO<sub>2</sub> as well as the reduction of CO<sub>2</sub> to CO are studied in a pulsed glow discharge. Two diagnostics are employed, being (1) time-resolved <i>in situ</i> Fourier transform infrared (FTIR) spectroscopy and (2) spatiotemporally resolved <i>in situ</i> rotational Raman spectroscopy. Experiments are conducted within a pressure range of 1.3-6.7 mbar and a current range of 10-50 mA. In the afterglow, the rate of exponential decay from the asymmetric stretch temperature (<i>T</i><sub>3</sub>) to the rotational temperature (<i>T</i><sub>rot</sub>) is found to be only dependent on <i>T</i><sub>rot</sub>, in the conditions under study. The decay rate <i>&#961;</i><sub><i>T</i><sub>3</sub>-<i>T</i><sub>rot</sub></sub> follows the relation <i>&#961;</i><sub><i>T</i><sub>3</sub>-<i>T</i><sub>rot</sub></sub> = 388 s<sup>-1</sup> exp((<i>T</i><sub>rot</sub> - 273 K)/(154 K)). Pressure and varying concentrations of CO and (presumably) atomic oxygen did not show to be of significant influence. In the active part of the discharge the excitation of <i>T</i><sub>3</sub> showed to be positively related to current and negatively to pressure. However, the contribution of current to vibrational excitation is ambiguous: the conversion of CO<sub>2</sub> and therefore the fraction of CO in the discharge, is found to be strongly dependent on the current, with a conversion factor of 0.05 to 0.18 for 10 mA to 50 mA, while CO can contribute to the excitation through near-resonant collisions. A clear relation between the elevation of <i>T</i><sub>3</sub> and the dissociation of CO<sub>2</sub> could not be confirmed, though conversion peaks are observed in the near afterglow, which motivate future experiments on vibrational ladder-climbing directly after termination of the discharge. (10.1088/1361-6595/aada5e)
    DOI : 10.1088/1361-6595/aada5e
  • Plasmaspheric Plumes and EMIC Rising Tone Emissions
    • Grison B.
    • Hanzelka M.
    • Breuillard Hugo
    • Darrouzet F.
    • Santolík O.
    • Cornilleau-Wehrlin Nicole
    • Dandouras I.
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2018, 123 (11), pp.9443-9452. Due to its polar orbit Cluster spacecraft crossed plasmaspheric plumes out of the magnetic equatorial plane. We study the occurrence of broadband, narrowband, and rising tone emissions in the plume vicinity, below the local proton gyrofrequency. Based on a database of 935 Cluster plumes crossings, reduced to 189 unique plumes, we find that broadband activity is the most common case. We confirm result from a previous study showing that plume vicinity is not a preferred place for observing narrowband emissions. Rising tones are the less frequently observed of these three kinds of emissions. Nevertheless, ElectroMagnetic Ion Cyclotron (EMIC) rising tone occurrence rate is high compared to the narrowband one: Tones are seen in six of 30 plume events (20%) when narrowband emissions are observed. Rising tones are observed at absolute magnetic latitudes larger than 17° and up to 35° . We detail the 16 August 2005 plume crossing when a rising tone is observed. Results of a ray tracing analysis agree with a tone triggering process taking place above 15° of magnetic latitude. (10.1029/2018JA025796)
    DOI : 10.1029/2018JA025796
  • Time of flight dispersed and repetitive ion structures in the diffuse auroral zone originating from 1-2 Re altitudes
    • Sauvaud Jean-André
    • Delcourt Dominique
    • Parrot Michel
    • Payan Denis
    • Penou Emmanuel
    , 2018, pp.2062. The AMBRE experiment onboard the ocean topography mapper JASON-3 aims at measuring auroral particle precipitation using two top-hat analyzers for electrons and ions in the 20 eV-28 keV energy range. The JASON-3 spacecraft that has a nearly circular orbit at an altitude of 1336 km with an inclination of 66°, at times probes the equatorward part of the auroral oval in a nearly tangentially manner upon leaving the outer radiation belt. In this region of space, during periods of enhanced geomagnetic activity with small or moderate storms, AMBRE detected recurrent ion bands/micro-injections with energies in the 200 eV-28 keV range and which exhibit clear time of flight dispersions. Ray tracing using single trajectory computations suggests that these ions are launched from a source located in the 8000-12000 km altitudinal range and subsequently propagate downward toward the ionosphere. More radial orbits show that the ion bands are detected inside the diffuse auroral zone up to the encounter of auroral arcs. Such observations of dispersed downflowing ions are new and we argue that these structures are produced by localized wave-particle interactions.
  • Generation of Electron Whistler Waves at the Mirror Mode Magnetic Holes: MMS Observations and PIC Simulation
    • Ahmadi N.
    • Wilder F. D.
    • Ergun R. E.
    • Argall M.
    • Usanova M. E.
    • Breuillard Hugo
    • Malaspina D.
    • Paulson K.
    • Germaschewski K.
    • Eriksson S.
    • Goodrich K. A.
    • Torbert R.
    • Le Contel Olivier
    • Strangeway R. J.
    • Russell C. T.
    • Burch J. L.
    • Giles B. L.
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2018, 123, pp.6383-6393. The Magnetospheric Multiscale mission has observed electron whistler waves at the center and at the edges of magnetic holes in the dayside magnetosheath. The magnetic holes are nonlinear mirror structures since their magnitude is anticorrelated with particle density. In this article, we examine the growth mechanisms of these whistler waves and their interaction with the host magnetic hole. In the observations, as magnetic holes develop and get deeper, an electron population gets trapped and develops a temperature anisotropy favorable for whistler waves to be generated. In addition, the decrease in magnetic field magnitude and the increase in density reduce the electron resonance energy, which promotes the electron cyclotron resonance. To investigate this process, we used expanding box particle-in-cell simulations to produce the mirror instability, which then evolve into magnetic holes. The simulation shows that whistler waves can be generated at the center and edges of magnetic holes, which reproduces the primary features of the MMS observations. The simulation shows that the electron temperature anisotropy develops in the center of the magnetic hole once the mirror instability reaches its nonlinear stage of evolution. The plasma is then unstable to whistler waves at the minimum of the magnetic field structures. In the saturation regime of mirror instability, when magnetic holes are developed, the electron temperature anisotropy appears at the edges of the holes and electron distributions become more isotropic at the magnetic field minimum. At the edges, the expansion of magnetic holes decelerates the electrons, which leads to temperature anisotropies. (10.1029/2018JA025452)
    DOI : 10.1029/2018JA025452
  • Turbulence and microprocesses in inhomogeneous solar wind plasmas
    • Krafft C.
    • Volokitin A.
    • Gauthier Gaétan
    , 2018. The random density fluctuations observed in the solar wind plasma crucially influence on the Langmuir wave turbulence generated by energetic electron beams ejected during solar bursts. Those are powerful phenomena consisting of a chain of successive processes leading ultimately to strong electromagnetic emissions. The small-scale processes governing the interactions between the waves, the beams and the inhomogeneous plasmas need to be studied to explain such macroscopic phenomena. Moreover, the complexity induced by the plasma irregularities requires to find new approaches and modelling. Therefore theoretical and numerical tools were built to describe the Langmuir wave turbulence and the beams dynamics in inhomogeneous plasmas, in the form of a self-consistent Hamiltonian model including a fluid description for the plasma and a kinetic approach for the beam. On this basis, numerical simulations were performed in order to shed light on the impact of the density fluctuations on the beam dynamics, the electromagnetic wave radiation, the generation of Langmuir wave turbulence, the waves coupling and decay phenomena involving Langmuir and low frequency waves, the acceleration of beam electrons, their diffusion mechanisms, the modulation of the Langmuir waveforms and the statistical properties of the radiated fields distributions.
  • A new multi-fluid model for space plasma simulations
    • Manuzzo Roberto
    • Califano F.
    • Belmont Gérard
    • Rezeau Laurence
    • Aunai N.
    , 2018, pp.SM11C-2792. We propose a new numerical code based on a new multi-species theoretical model to study the mass, momentum and energy exchanges (MMEE) that happen across the magnetospheric boundaries. We use two distinct populations for ions, one cold and one hot (plus one neutralising electron population), to take into account the differences between the properties of the plasmas coming from the magnetosphere and from the solar wind. This approach represents a step forward in the context of the study of coupled large-scale plasma systems being a new and efficient compromise between fluid and kinetic codes in tracing the different plasma contributions during MMEE. Due to the very important role that magnetic reconnection plays in connecting the shocked Solar Wind to the Earth's magnetosphere, we show and discuss the results we obtained about the simulations of the tearing mode instability occurring across an Earth's magnetopause that we modelled thanks to our most recents MMS observations [Rezeau 2018]. &
  • Plasma-catalytic mineralization of toluene adsorbed on CeO<SUB>2</SUB>
    • Jia Zixian
    • Wang Xianjie
    • Foucher Emeric
    • Thevenet Frederic
    • Rousseau Antoine
    Catalysts, MDPI, 2018, 8 (8), pp.303. In the context of coupling nonthermal plasmas with catalytic materials, CeO2 is used as adsorbent for toluene and combined with plasma for toluene oxidation. Two configurations are addressed for the regeneration of toluene saturated CeO2: (i) in plasma-catalysis (IPC); and (ii) post plasma-catalysis (PPC). As an advanced oxidation technique, the performances of toluene mineralization by the plasma-catalytic systems are evaluated and compared through the formation of CO2. First, the adsorption of 100 ppm of toluene onto CeO2 is characterized in detail. Total, reversible and irreversible adsorbed fractions are quantified. Specific attention is paid to the influence of relative humidity (RH): (i) on the adsorption of toluene on CeO2; and (ii) on the formation of ozone in IPC and PPC reactors. Then, the mineralization yield and the mineralization efficiency of adsorbed toluene are defined and investigated as a function of the specific input energy (SIE). Under these conditions, IPC and PPC reactors are compared. Interestingly, the highest mineralization yield and efficiency are achieved using the in-situ configuration operated with the lowest SIE, that is, lean conditions of ozone. Based on these results, the specific impact of RH on the IPC treatment of toluene adsorbed on CeO2 is addressed. Taking into account the impact of RH on toluene adsorption and ozone production, it is evidenced that the mineralization of toluene adsorbed on CeO2 is directly controlled by the amount of ozone produced by the discharge and decomposed on the surface of the coupling material. Results highlight the key role of ozone in the mineralization process and the possible detrimental effect of moisture. (10.3390/catal8080303)
    DOI : 10.3390/catal8080303
  • New Insights into the Nature of Turbulence in the Earth's Magnetosheath Using Magnetospheric MultiScale Mission Data
    • Breuillard Hugo
    • Matteini L.
    • Argall M. R.
    • Sahraoui Fouad
    • Andriopoulou M.
    • Le Contel Olivier
    • Retinò Alessandro
    • Mirioni Laurent
    • Huang S. Y.
    • Gershman D. J.
    • Ergun R. E.
    • Wilder F. D.
    • Goodrich K. A.
    • Ahmadi N.
    • Yordanova E.
    • Vaivads A.
    • Turner D. L.
    • Khotyaintsev Y. V.
    • Graham D. B.
    • Lindqvist P.-A.
    • Chasapis A.
    • Burch J. L.
    • Torbert R. B.
    • Russell C. T.
    • Magnes W.
    • Strangeway R. J.
    • Plaschke F.
    • Moore T. E.
    • Giles B. L.
    • Paterson W. R.
    • Pollock C. J.
    • Lavraud B.
    • Fuselier S. A.
    • Cohen I. J.
    The Astrophysical Journal, American Astronomical Society, 2018, 859, pp.127. The Earth's magnetosheath, which is characterized by highly turbulent fluctuations, is usually divided into two regions of different properties as a function of the angle between the interplanetary magnetic field and the shock normal. In this study, we make use of high-time resolution instruments on board the Magnetospheric MultiScale spacecraft to determine and compare the properties of subsolar magnetosheath turbulence in both regions, i.e., downstream of the quasi-parallel and quasi-perpendicular bow shocks. In particular, we take advantage of the unprecedented temporal resolution of the Fast Plasma Investigation instrument to show the density fluctuations down to sub-ion scales for the first time. We show that the nature of turbulence is highly compressible down to electron scales, particularly in the quasi-parallel magnetosheath. In this region, the magnetic turbulence also shows an inertial (Kolmogorov-like) range, indicating that the fluctuations are not formed locally, in contrast with the quasi-perpendicular magnetosheath. We also show that the electromagnetic turbulence is dominated by electric fluctuations at sub-ion scales (f &gt; 1 Hz) and that magnetic and electric spectra steepen at the largest-electron scale. The latter indicates a change in the nature of turbulence at electron scales. Finally, we show that the electric fluctuations around the electron gyrofrequency are mostly parallel in the quasi-perpendicular magnetosheath, where intense whistlers are observed. This result suggests that energy dissipation, plasma heating, and acceleration might be driven by intense electrostatic parallel structures/waves, which can be linked to whistler waves. (10.3847/1538-4357/aabae8)
    DOI : 10.3847/1538-4357/aabae8
  • Numerical study on the time evolutions of the electric field in helium plasma jets with positive and negative polarities
    • Viegas Pedro
    • Pechereau François
    • Bourdon Anne
    Plasma Sources Science and Technology, IOP Publishing, 2018, 27, pp.025007. This paper presents 2D simulations of atmospheric pressure discharges in helium with N2 and O2 admixtures, propagating in a dielectric tube between a point electrode and a grounded metallic target. For both positive and negative polarities, the propagation of the first ionization front is shown to correspond to a peak of the absolute value of the axial electric field inside the tube, but also outside the tube. After the impact on the metallic target, a rebound front is shown to propagate from the target to the point electrode. This rebound front is 23 times faster than the first ionization front. Close to the high voltage point, this rebound front corresponds to a second peak of the absolute value of the axial electric field. Close to the target, as the first ionization and rebound fronts are close in time, only one peak is observed. The dynamics of the absolute value of the radial component of electric field outside the tube is shown to present an increase during the first ionization front propagation and a fast decrease corresponding to the propagation of the rebound front. These time evolutions of the electric field components are in agreement with experiments. Finally, we have shown that the density of metastable He * in 99% He1% N2 and 99% He1% O2 atmospheric pressure discharges are very close. Close to the grounded target, the peak density of reactive species is significantly increased due to the synergy between the first ionization and rebound fronts, as observed in experiments. Similar results are obtained for both voltage polarities, but the peak density of metastable He* close to the target is shown to be two times less in negative polarity than in positive polarity. (10.1088/1361-6595/aaa7d4)
    DOI : 10.1088/1361-6595/aaa7d4