Share

Publications

Publications

2022 | 2021 | 2020 | 2019

Below, by year, are the publications listed in the HAL open archive.

2018

  • Méthodes mathématiques pour la physique
    • Dotsenko Vladimir
    • Courtat Axel
    • Gauthier Gaétan
    , 2018, pp.704 pages. EAN − 9782100777051 Cet ouvrage regroupe en un seul volume toutes les méthodes mathématiques de base indispensables pour la physique. Chaque méthode ou définition introduite est présentée de manière formelle puis systématiquement replacée dans le contexte...
  • Large-Amplitude High-Frequency Waves at Earth's Magnetopause
    • Graham D. B.
    • Vaivads A.
    • Khotyaintsev Y. V.
    • André M.
    • Le Contel Olivier
    • Malaspina D. M.
    • Lindqvist P.-A.
    • Wilder F. D.
    • Ergun R. E.
    • Gershman D. J.
    • Giles B. L.
    • Magnes W.
    • Russell C. T.
    • Burch J. L.
    • Torbert R. B.
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2018, 123 (4), pp.2630-2657. Large-amplitude waves near the electron plasma frequency are found by the Magnetospheric Multiscale (MMS) mission near Earth's magnetopause. The waves are identified as Langmuir and upper hybrid (UH) waves, with wave vectors either close to parallel or close to perpendicular to the background magnetic field. The waves are found all along the magnetopause equatorial plane, including both flanks and close to the subsolar point. The waves reach very large amplitudes, up to 1 V m-1, and are thus among the most intense electric fields observed at Earth's magnetopause. In the magnetosphere and on the magnetospheric side of the magnetopause the waves are predominantly UH waves although Langmuir waves are also found. When the plasma is very weakly magnetized only Langmuir waves are likely to be found. Both Langmuir and UH waves are shown to have electromagnetic components, which are consistent with predictions from kinetic wave theory. These results show that the magnetopause and magnetosphere are often unstable to intense wave activity near the electron plasma frequency. These waves provide a possible source of radio emission at the magnetopause. (10.1002/2017JA025034)
    DOI : 10.1002/2017JA025034
  • Plasma non-uniformity in a symmetric radiofrequency capacitively-coupled reactor with dielectric side-wall: a two dimensional particle-in-cell/Monte Carlo collision simulation
    • Liu Yue
    • Booth Jean-Paul
    • Chabert Pascal
    Plasma Sources Science and Technology, IOP Publishing, 2018, 27 (2), pp.025006. A Cartesian-coordinate two-dimensional electrostatic particle-in-cell/Monte Carlo collision (PIC/MCC) plasma simulation code is presented, including a new treatment of charge balance at dielectric boundaries. It is used to simulate an Ar plasma in a symmetric radiofrequency capacitively-coupled parallel-plate reactor with a thick (3.5 cm) dielectric side-wall. The reactor size (12 cm electrode width, 2.5 cm electrode spacing) and frequency (15 MHz) are such that electromagnetic effects can be ignored. The dielectric side-wall effectively shields the plasma from the enhanced electric field at the powered-grounded electrode junction, which has previously been shown to produce locally enhanced plasma density (Dalvie et al 1993 Appl. Phys. Lett. 62 3207?9; Overzet and Hopkins 1993 Appl. Phys. Lett. 63 2484?6; Boeuf and Pitchford 1995 Phys. Rev. E 51 1376?90). Nevertheless, enhanced electron heating is observed in a region adjacent to the dielectric boundary, leading to maxima in ionization rate, plasma density and ion flux to the electrodes in this region, and not at the reactor centre as would otherwise be expected. The axially-integrated electron power deposition peaks closer to the dielectric edge than the electron density. The electron heating components are derived from the PIC/MCC simulations and show that this enhanced electron heating results from increased Ohmic heating in the axial direction as the electron density decreases towards the side-wall. We investigated the validity of different analytical formulas to estimate the Ohmic heating by comparing them to the PIC results. The widespread assumption that a time-averaged momentum transfer frequency, v m , can be used to estimate the momentum change can cause large errors, since it neglects both phase and amplitude information. Furthermore, the classical relationship between the total electron current and the electric field must be used with caution, particularly close to the dielectric edge where the (neglected) pressure gradient term becomes significant. (10.1088/1361-6595/aaa86e)
    DOI : 10.1088/1361-6595/aaa86e
  • Non-adiabatic energization and transport of planetary ions in the magnetospheric flanks of Mercury
    • Aizawa S.
    • Delcourt Dominique
    • Terada N.
    • Kasaba Y.
    • Katoh Y.
    , 2018, 2018, pp.pp. 10. We investigate the acceleration and transport of planetary ions within Kelvin-Helmholtz (KH) vortices that develop in the magnetospheric flanks of Mercury, using single-particle trajectory calculations in a field model obtained from MHD simulations. Due to the presence of heavy ions of planetary origin (e.g., O+, Na+, and K+) following ionization of exospheric neutrals and the complicated field structure during the KH vortex development, the scale of electric field variation may be comparable with ion gyration motion. Therefore ions may experience non-adiabatic energization as they drift across the magnetopause. In this study, we consider realistic configurations for both dawn and dusk magnetospheric flanks, and we focus on the effect of the spatial and temporal variations of the electric field magnitude and orientation along the ion path on the ion dynamics. We show that the intensification rather than the change of orientation is responsible for large non-adiabatic energization of heavy ions of planetary origin. This energization systematically occurs for ions with low initial energies in the direction perpendicular to the magnetic field, the energy gain being of the order of the energy corresponding to the maximum ExB drift speed, ɛ<SUB>max</SUB>, in a like manner to a pickup ion process. It is also found that ions that have initial energies comparable to ɛ<SUB>max </SUB>may be decelerated depending upon gyration phase. We find that ions with initial perpendicular energies much larger than ɛ<SUB>max </SUB>are little affected along the ion path through KH vortices. By comparing dynamical regimesin the dawn versus dusk regions, and also by considering different IMF directions, we show that the ion transport across the magnetopause is controlled by the orientation of the magnetosheath electric field and that the rate of energization depends upon the scale of KH vortices versus Larmor radii.
  • Whistler envelope solitons. II. Interaction with non-relativistic electron beams in plasmas with density inhomogeneities
    • Krafft C.
    • Volokitin A. S.
    Physics of Plasmas, American Institute of Physics, 2018, 25 (10), pp.102302. This paper studies the self-consistent interactions between whistler envelope solitons and electron beams in inhomogeneous plasmas, using a Hamiltonian model of wave-particle interaction where nonlinear equations describing the dynamics of whistler and ion acoustic waves and including a beam current term are coupled with Newton equations. It allows describing the parallel propagation of narrowband whistlers interacting with arbitrary particle distributions in irregular plasmas. It is shown that the whistler envelope soliton does not exchange energy with all the resonant electrons as in the case of whistler turbulence but mostly with those moving in its close vicinity (locality condition), even if the downstream particle distribution is perturbed. During these interactions, the soliton can either damp and accelerate particles, or absorb beam energy and cause electron deceleration. If the energy exchanges are significant, the envelope is deformed; its upstream front can steepen, whereas oscillations can appear on its downstream side. Weak density inhomogeneities as the random fluctuations of the solar wind plasma have no strong impact on the interactions of the whistler soliton with the resonant particles. (10.1063/1.5041075)
    DOI : 10.1063/1.5041075
  • Magnetic Reconnection at a Thin Current Sheet Separating Two Interlaced Flux Tubes at the Earth's Magnetopause
    • Kacem I.
    • Jacquey C.
    • Génot V.
    • Lavraud B.
    • Vernisse Y.
    • Marchaudon A.
    • Le Contel Olivier
    • Breuillard Hugo
    • Phan T. D.
    • Hasegawa H.
    • Oka M.
    • Trattner K. J.
    • Farrugia C. J.
    • Paulson K.
    • Eastwood Jonathan P.
    • Fuselier S. A.
    • Turner D. L.
    • Eriksson S.
    • Wilder F. D.
    • Russell C. T.
    • Oieroset M.
    • Burch J. L.
    • Graham D. B.
    • Sauvaud J.-A.
    • Avanov L.
    • Chandler Michael O.
    • Coffey Victoria
    • Dorelli J. C.
    • Gershman D. J.
    • Giles B. L.
    • Moore T. E.
    • Saito Y.
    • Chen L. J.
    • Penou E.
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2018, 123 (3), pp.1779-1793. The occurrence of spatially and temporally variable reconnection at the Earth's magnetopause leads to the complex interaction of magnetic fields from the magnetosphere and magnetosheath. Flux transfer events (FTEs) constitute one such type of interaction. Their main characteristics are (1) an enhanced core magnetic field magnitude and (2) a bipolar magnetic field signature in the component normal to the magnetopause, reminiscent of a large-scale helicoidal flux tube magnetic configuration. However, other geometrical configurations which do not fit this classical picture have also been observed. Using high-resolution measurements from the Magnetospheric Multiscale mission, we investigate an event in the vicinity of the Earth's magnetopause on 7 November 2015. Despite signatures that, at first glance, appear consistent with a classic FTE, based on detailed geometrical and dynamical analyses as well as on topological signatures revealed by suprathermal electron properties, we demonstrate that this event is not consistent with a single, homogenous helicoidal structure. Our analysis rather suggests that it consists of the interaction of two separate sets of magnetic field lines with different connectivities. This complex three-dimensional interaction constructively conspires to produce signatures partially consistent with that of an FTE. We also show that, at the interface between the two sets of field lines, where the observed magnetic pileup occurs, a thin and strong current sheet forms with a large ion jet, which may be consistent with magnetic flux dissipation through magnetic reconnection in the interaction region. (10.1002/2017JA024537)
    DOI : 10.1002/2017JA024537
  • Chemical kinetics in an atmospheric pressure helium plasma containing humidity
    • Schröter Sandra
    • Wijaikhum Apiwat
    • Gibson Andrew
    • West Andrew
    • Davies Helen
    • Minesi Nicolas
    • Dedrick James
    • Wagenaars Erik
    • de Oliveira Nelson
    • Nahon Laurent
    • Kushner Mark
    • Booth Jean-Paul
    • Niemi Kari
    • Gans Timo
    • O'Connell Deborah
    Physical Chemistry Chemical Physics, Royal Society of Chemistry, 2018, 20 (37), pp.24263-24286. a Atmospheric pressure plasmas are sources of biologically active oxygen and nitrogen species, which makes them potentially suitable for the use as biomedical devices. Here, experiments and simulations are combined to investigate the formation of the key reactive oxygen species, atomic oxygen (O) and hydroxyl radicals (OH), in a radio-frequency driven atmospheric pressure plasma jet operated in humidified helium. Vacuum ultraviolet high-resolution Fourier-transform absorption spectroscopy and ultraviolet broad-band absorption spectroscopy are used to measure absolute densities of O and OH. These densities increase with increasing H 2 O content in the feed gas, and approach saturation values at higher admixtures on the order of 3 Â 10 14 cm À3 for OH and 3 Â 10 13 cm À3 for O. Experimental results are used to benchmark densities obtained from zero-dimensional plasma chemical kinetics simulations, which reveal the dominant formation pathways. At low humidity content, O is formed from OH + by proton transfer to H 2 O, which also initiates the formation of large cluster ions. At higher humidity content, O is created by reactions between OH radicals, and lost by recombination with OH. OH is produced mainly from H 2 O + by proton transfer to H 2 O and by electron impact dissociation of H 2 O. It is lost by reactions with other OH molecules to form either H 2 O + O or H 2 O 2. Formation pathways change as a function of humidity content and position in the plasma channel. The understanding of the chemical kinetics of O and OH gained in this work will help in the development of plasma tailoring strategies to optimise their densities in applications. (10.1039/c8cp02473a)
    DOI : 10.1039/c8cp02473a
  • Reconnexion magnétique entre le vent solaire et la magnétosphère
    • Rezeau Laurence
    • Belmont Gérard
    Reflets de la Physique, EDP sciences, 2018 (59), pp.20. Dans le vent solaire, plasma et champ magnétique se déplacent ensemble à grande échelle. L'interface avec la magnétosphère terrestre est une frontière fine, la magnétopause, où il peut exister des échelles suffisamment petites pour dissocier les deux mouvements. Il en résulte un phénomène nommé "reconnexion magnétique" au cours duquel le plasma est fortement accéléré le long de la frontière. La mission MMS a des points forts qui en font le meilleur outil pour étudier ce phénomène : une résolution temporelle des mesures inégalée et des satellites très proches les uns des autres (environ 10 km, de l'ordre du rayon de Larmor des électrons). (10.1051/refdp/201859020)
    DOI : 10.1051/refdp/201859020
  • Exact law for homogeneous compressible Hall magnetohydrodynamics turbulence
    • Andrés Nahuel
    • Galtier Sébastien
    • Sahraoui Fouad
    Physical Review E, American Physical Society (APS), 2018, 97 (1), pp.013204. We derive an exact law for three-dimensional (3D) homogeneous compressible isothermal Hall magnetohydrodynamic turbulence, without the assumption of isotropy. The Hall current is shown to introduce new flux and source terms that act at the small scales (comparable or smaller than the ion skin depth) to significantly impact the turbulence dynamics. The law provides an accurate means to estimate the energy cascade rate over a broad range of scales covering the magnetohydrodynamic inertial range and the sub-ion dispersive range in 3D numerical simulations and in in situ spacecraft observations of compressible turbulence. This work is particularly relevant to astrophysical flows in which small-scale density fluctuations cannot be ignored such as the solar wind, planetary magnetospheres, and the interstellar medium. (10.1103/PhysRevE.97.013204)
    DOI : 10.1103/PhysRevE.97.013204
  • Validation of gyrokinetic simulations with measurements of electron temperature fluctuations and density-temperature phase angles on ASDEX Upgrade
    • Freethy S. J.
    • Görler T.
    • Creely A. J.
    • Conway G. D.
    • Denk S. S.
    • Happel T.
    • Koenen C.
    • Hennequin Pascale
    • White A. E.
    Physics of Plasmas, American Institute of Physics, 2018, 25 (5), pp.055903. Measurements of turbulent electron temperature fluctuation amplitudes, dTe?=T e, frequency spectra, and radial correlation lengths, LrðT e? Þ, have been performed at ASDEX Upgrade using a newly upgraded Correlation ECE diagnostic in the range of scales k? < 1:4 cm1; k r < 3:5 cm1 (k?qs < 0:28 and k rqs < 0:7). The phase angle between turbulent temperature and density fluctuations, anT, has also been measured by using an ECE radiometer coupled to a reflectometer along the same line of sight. These quantities are used simultaneously to constrain a set of ion- scale non-linear gyrokinetic turbulence simulations of the outer core (qtor ¼ 0.75) of a low density, electron heated L-mode plasma, performed using the gyrokinetic simulation code, GENE. The ion and electron temperature gradients were scanned within uncertainties. It is found that gyrokinetic simulations are able to match simultaneously the electron and ion heat flux at this radius within the experimental uncertainties. The simulations were performed based on a reference discharge for which dT e?=T e measurements were available, and L rðTe? Þ and anT were then predicted using syn- thetic diagnostics prior to measurements in a repeat discharge. While temperature fluctuation amplitudes are overestimated by >50% for all simulations within the sensitivity scans performed, good quantitative agreement is found for L rðT e? Þ and anT. A validation metric is used to quantify the level of agreement of individual simulations with experimental measurements, and the best agreement is found close to the experimental gradient values. Published by AIP Publishing. (10.1063/1.5018930)
    DOI : 10.1063/1.5018930
  • Anomalous electron transport in Hall-effect thrusters: Comparison between quasi-linear kinetic theory and particle-in-cell simulations
    • Lafleur Trevor
    • Martorelli Roberto
    • Chabert Pascal
    • Bourdon Anne
    Physics of Plasmas, American Institute of Physics, 2018, 25 (6), pp.061202. Kinetic drift instabilities have been implicated as a possible mechanism leading to anomalous electron cross-field transport in E B discharges, such as Hall-effect thrusters. Such instabilities, which are driven by the large disparity in electron and ion drift velocities, present a significant challenge to modelling efforts without resorting to time-consuming particle-in-cell (PIC) simulations. Here, we test aspects of quasi-linear kinetic theory with 2D PIC simulations with the aim of developing a self-consistent treatment of these instabilities. The specific quantities of interest are the instability growth rate (which determines the spatial and temporal evolution of the instability amplitude), and the instability-enhanced electron-ion friction force (which leads to anomalous electron transport). By using the self-consistently obtained electron distribution functions from the PIC simulations (which are in general non-Maxwellian), we find that the predictions of the quasilinear kinetic theory are in good agreement with the simulation results. By contrast, the use of Maxwellian distributions leads to a growth rate and electron-ion friction force that is around 24 times higher, and consequently significantly overestimates the electron transport. A possible method for self-consistently modelling the distribution functions without requiring PIC simulations is discussed (10.1063/1.5017626)
    DOI : 10.1063/1.5017626
  • Sodium Ion Dynamics in the Magnetospheric Flanks of Mercury
    • Aizawa Sae
    • Delcourt Dominique C.
    • Terada N.
    Geophysical Research Letters, American Geophysical Union, 2018, 45, pp.595-601. We investigate the transport of planetary ions in the magnetospheric flanks of Mercury. In situ measurements from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft show evidences of Kelvin-Helmholtz instability development in this region of space, due to the velocity shear between the downtail streaming flow of solar wind originating protons in the magnetosheath and the magnetospheric populations. Ions that originate from the planet exosphere and that gain access to this region of space may be transported across the magnetopause along meandering orbits. We examine this transport using single-particle trajectory calculations in model Magnetohydrodynamics simulations of the Kelvin-Helmholtz instability. We show that heavy ions of planetary origin such as Na<SUP> </SUP> may experience prominent nonadiabatic energization as they <fi>E</fi> × <fi>B</fi> drift across large-scale rolled up vortices. This energization is controlled by the characteristics of the electric field burst encountered along the particle path, the net energy change realized corresponding to the maximum <fi>E</fi> × <fi>B</fi> drift energy. This nonadiabatic energization also is responsible for prominent scattering of the particles toward the direction perpendicular to the magnetic field. (10.1002/2017GL076586)
    DOI : 10.1002/2017GL076586
  • Effect of frequency on the uniformity of symmetrical RF CCP discharges
    • Liu Yue
    • Booth Jean-Paul
    • Chabert Pascal
    Plasma Sources Science and Technology, IOP Publishing, 2018, 27 (5), pp.055012. A 2D Cartesian electrostatic particle-in-cell/Monte Carlo collision (PIC/MCC) model presented previously (Liu et al 2018 Plasma Sources Sci. Technol. 27 025006) is used to investigate the effect of the driving frequency (over the range of 15?45 MHz) on the plasma uniformity in radio frequency (RF) capacitively coupled plasma (CCP) discharges in a geometrically symmetric reactor with a dielectric side wall in argon gas. The reactor size (12 cm electrode length, 2.5 cm gap) and driving frequency are sufficiently small that electromagnetic effects can be ignored. Previously, we showed (Liu et al 2018 Plasma Sources Sci. Technol. 27 025006) that for 15 MHz excitation, Ohmic heating of electrons by the electric field perpendicular to the electrodes is enhanced in a region in front of the dielectric side wall, leading to a maximum in electron density there. In this work we show that increasing the excitation frequency (at constant applied voltage amplitude) not only increases the overall electron heating and density but also causes a stronger, narrower peak in electron heating closer to the dielectric wall, improving the plasma uniformity along the electrodes. This heating peak comes both from enhanced perpendicular electron heating and from the appearance at high frequency of significant parallel heating. The latter is caused by the presence of a significant parallel-direction RF oscillating electric field in the corners. Whereas at the reactor center the sheaths oscillate perpendicularly to the electrodes, near the dielectric edge they move in and out of the corners and must be treated in two dimensions. (10.1088/1361-6595/aabfb4)
    DOI : 10.1088/1361-6595/aabfb4
  • Introduction à la physique des plasmas
    • Belmont Gérard
    • Rezeau Laurence
    • Riconda C.
    • Zaslavsky A.
    , 2018. Les plasmas sont peu présents dans notre environnement immédiat et leurs propriétés sont parfois ignorées des physiciens. Il sagit pourtant de phénomènes universels quon rencontre depuis les décharges électriques jusquaux jets galactiques. Lobjectif de cet ouvrage est doffrir une introduction aux phénomènes variés qui constituent la physique des plasmas avec comme seul prérequis davoir une connaissance de la physique de base. Il présente en parallèle les fondements de la théorie des plasmas et un certain nombre dapplications aux plasmas de laboratoire ou aux plasmas naturels. Un accent particulier est mis sur lexistence des plasmas sans collision, dans lesquels le comportement collectif du milieu est dû seulement au champ électromagnétique moyen qui régit les trajectoires des particules. Ceci permet de porter un regard neuf sur des notions déjà abordées dans dautres disciplines, mais aussi de comprendre les liens qui existent entre les théories fluides, en particulier pour létude de la propagation des ondes.
  • Comparative Study between Direct and Indirect Treatment with Cold Atmospheric Plasma on In Vitro and In Vivo Models of Wound Healing
    • Duchesne Constance
    • Frescaline Nadira
    • Lataillade Jean-Jacques
    • Rousseau Antoine
    Plasma Medicine, Begell House, 2018, 8 (4), pp.379-401. Cold-atmospheric plasma (CAP) produces a mixture of molecular, ionic, and radical species as well as electric field visible and ultraviolet lights. Biological effects of CAP and its therapeutic potential have been studied in disciplines such as dermatology, oncology, and dentistry. This study investigates both in vitro and in vivo effects of direct and indirect plasma treatment and their influences on wound healing. The effect of plasma treatment on cellular viability, migration, and proliferation are studied using keratinocytes, fibroblasts, and endothelial cells. Plasma is generated in a helium jet using an alternating-current 50-Hz power supply at 32 kV and 90 mW. Results show that 1-min direct CAP treatment stimulates skin cell migration; however, cellular proliferation remains unchanged. Treatment > 3 min leads to cell death. Using the same treatment parameters, notably exposure time, indirect treatment using a plasma-activated medium fails to stimulate cellular migration. A murine model of full-thickness excisional wound healing is used to study the effect of CAP on wound closure. In vivo studies demonstrate that both direct and indirect treatment do not affect acute wound closure in mice. Taken together, these results suggest that direct plasma treatment with homemade plasma devices has the potential to positively influence wound healing, but optimum parameters and suitable wound models must be identified and validated. (10.1615/PlasmaMed.2019028659)
    DOI : 10.1615/PlasmaMed.2019028659
  • Observations of the Electron Jet Generated by Secondary Reconnection in the Terrestrial Magnetotail
    • Huang S. Y.
    • Jiang K.
    • Yuan Z. G.
    • Sahraoui Fouad
    • He L. H.
    • Zhou M.
    • Fu H. S.
    • Deng X. H.
    • He J. S.
    • Cao D.
    • Yu X. D.
    • Wang D. D.
    • Burch J. L.
    • Pollock C. J.
    • Torbert R. B.
    The Astrophysical Journal, American Astronomical Society, 2018, 862 (2), pp.144. We report in situ observations of an electron jet generated by secondary reconnection within the outflow region of primary reconnection in the terrestrial magnetotail by the Magnetospheric Multiscale (MMS) mission. The MMS spacecraft first passed through the primary X-line and then crossed the electron jet in the outflow of primary reconnection. There are a series of small-scale flux ropes in the secondary reconnection region. Decoupling from the magnetic field for both ions and electrons, an intense out-of-plane current, unambiguous Hall currents, and a Hall electromagnetic field appear in the electron jet. Strong electron dissipation (), a nonzero electric field in the electron frame (), and electron crescent-like shaped distributions are detected in the center of the electron jet, implying that MMS spacecraft were likely passing through the electron diffusion region. The significant electron dissipation indicates that the electrons can be accelerated in the electron jet and the electron jet may be another important electron acceleration channel along with the electron diffusion region. (10.3847/1538-4357/aacd4c)
    DOI : 10.3847/1538-4357/aacd4c
  • Erratum: Numerical study of the influence of surface reaction probabilities on reactive species in an rf atmospheric pressure plasma containing humidity (2017 Plasma Phys. Control. Fusion 60 014035)
    • Schröter Sandra
    • Gibson Andrew R.
    • Kushner Mark J.
    • Gans Timo
    • O'Connell Deborah
    Plasma Physics and Controlled Fusion, IOP Publishing, 2018, 60. Not Available (10.1088/1361-6587/aa9a6b)
    DOI : 10.1088/1361-6587/aa9a6b
  • Plasma-activation of tap water using DBD for agronomy applications: Identification and quantification of long lifetime chemical species and production/consumption mechanisms
    • Judée Florian
    • Simon Stéphane
    • Bailly Christophe
    • Dufour Thierry
    Water Research, IWA Publishing/Elsevier, 2018, 133, pp.47-59. Cold atmospheric plasmas are weakly ionized gases that can be generated in ambient air. They produce energetic species (e.g. electrons, metastables) as well as reactive oxygen species, reactive nitrogen species, UV radiations and local electric field. Their interaction with a liquid such as tap water can hence change its chemical composition. The resulting " plasma-activated liquid " can meet many applications, including medicine and agriculture. Consequently, a complete experimental set of analytical techniques dedicated to the characterization of long lifetime chemical species has been implemented to characterize tap water treated using cold atmospheric plasma process and intended to agronomy applications. For that purpose, colorimetry and acid titrations are performed, considering acid-base equilibria, pH and temperature variations induced during plasma activation. 16 species are quantified and monitored: hydroxide and hydronium ions, ammonia and ammonium ions, orthophosphates, carbonate ions, nitrite and nitrate ions and hydrogen peroxide. The related consumption/production mechanisms are discussed. In parallel, a chemical model of electrical conductivity based on Kohlrausch's law has been developed to simulate the electrical conductivity of the plasma-activated tap water (PATW). Comparing its predictions with experimental measurements leads to a narrow fitting, hence supporting the self-sufficiency of the experimental set, i.e. the fact that all long lifetime radicals of interest present in PATW are characterized. Finally, to evaluate the potential of cold atmospheric plasmas for agriculture applications, tap water has been daily plasma-treated to irrigate lentils seeds. Then, seedlings lengths have been measured and compared with untreated tap water, showing an increase as high as 34.0% and 128.4% after 3 days and 6 days of activation respectively. The interaction mechanisms between plasma and tap water are discussed as well as their positive synergy on agronomic results. (10.1016/j.watres.2017.12.035)
    DOI : 10.1016/j.watres.2017.12.035
  • Study of Ionospheric Variability Using GNSS Observations
    • Jouan Taoufiq
    • Bouziani Mourad
    • Azzouzi Rachid
    • Amory-Mazaudier Christine
    Positioning, SCIRP, 2018 (9), pp.79-96. With the increasing number of applications of Global navigation satellite system, the modeling of the ionosphere is a crucial element for precise positioning. Indeed, the ionosphere delays the electromagnetic waves which pass through it and induces a delay of propagation related to the electronic density (TEC) Total Electronic Content and to the frequency of the wave. The impact of this ionospheric error often results in a poor determination of the stations position, particularly in strong solar activity. The first part of this paper focuses on a bibliographic study oriented first of all on the study of the ionosphere in relation to solar activity and secondly on the determination of the total electron content using GNSS measurements from the IGS network reference stations. Measurements were made on two permanent stations RABT, TETN. We selected years of GNSS measurements to evaluate the geomagnetic impact on the ionosphere, 2001, 2009 and 2013. A description of the ionospheric disturbances and geomagnetic storms was analyzed by determination of TEC, especially in high solar activity. The results show a strong dependence of the ionospheric activity with the geomagnetic activity. (10.4236/pos.2018.94006)
    DOI : 10.4236/pos.2018.94006
  • Fast gas heating of nanosecond pulsed surface dielectric barrier discharge: spatial distribution and fractional contribution from kinetics
    • Zhu Yifei
    • Starikovskaia Svetlana
    Plasma Sources Science and Technology, IOP Publishing, 2018, 27. The effect of heat release in reactions with charged and electronically excited species, or so-called fast gas heating (FGH), in nanosecond surface dielectric barrier discharge (nSDBD) in atmospheric pressure air is studied. Two-dimensional numerical simulations based on the PArallel Streamer Solver with KinEtics code are conducted. The code is based on the direct coupling of a self-consistent fluid model with detailed kinetics, an efficient photoionization model, and Euler equations. The choice of local field approximation for nSDBD modeling with simplified kinetics is discussed. The reduced electric field and the electron density are examined at both polarities for identical high-voltage pulses 24 kV in amplitude on a high-voltage electrode and 20 ns full width at half maximum. The distribution of the FGH energy and the resulting gas temperature field are studied and compared with findings in the literature. The input of different reactions to the appearance of hydrodynamic perturbations is analyzed. (10.1088/1361-6595/aaf40d)
    DOI : 10.1088/1361-6595/aaf40d
  • Reply to Comment on `The case for in situ resource utilisation for oxygen production on Mars by non-equilibrium plasmas
    • Guerra Vasco
    • Silva Tiago
    • Ogloblina Polina
    • Grofulovic Marija
    • Terraz Loann
    • Lino da Silva Mário
    • Pintassilgo Carlos D.
    • Alves Luís L.
    • Guaitella Olivier
    Plasma Sources Science and Technology, IOP Publishing, 2018, 27. Not Available (10.1088/1361-6595/aaa570)
    DOI : 10.1088/1361-6595/aaa570
  • Magnetic depression and electron transport in an ion-scale flux rope associated with Kelvin–Helmholtz waves
    • Tang Binbin
    • Li Wenya
    • Wang Chi
    • Dai Lei
    • Khotyaintsev Yuri
    • Lindqvist Per-Arne
    • Ergun Robert
    • Le Contel Olivier
    • Pollock Craig
    • Russell Christopher
    • Burch James
    Annales Geophysicae, European Geosciences Union, 2018, 36 (3), pp.879-889. We report an ion-scale magnetic flux rope (the size of the flux rope is ∼ 8.5 ion inertial lengths) at the trailing edge of Kelvin–Helmholtz (KH) waves observed by the Magnetospheric Multiscale (MMS) mission on 27 Septem-ber 2016, which is likely generated by multiple X-line re-connection. The currents of this flux rope are highly filamen-tary: in the central flux rope, the current flows are mainly parallel to the magnetic field, supporting a local magnetic field increase at about 7 nT, while at the edges the current filaments are predominantly along the antiparallel direction, which induce an opposing field that causes a significant magnetic depression along the axis direction (> 20 nT), meaning the overall magnetic field of this flux rope is depressed compared to the ambient magnetic field. Thus, this flux rope, accompanied by the plasma thermal pressure enhancement in the center, is referred to as a crater type. Intense lower hybrid drift waves (LHDWs) are found at the magnetospheric edge of the flux rope, and the wave potential is estimated to be ∼ 17 % of the electron temperature. Though LHDWs may be stabilized by the mechanism of electron resonance broadening , these waves could still effectively enable diffusive electron transports in the cross-field direction, corresponding to a local density dip. This indicates LHDWs could play important roles in the evolution of crater flux ropes. (10.5194/angeo-36-879-2018)
    DOI : 10.5194/angeo-36-879-2018
  • Analyzing the Magnetopause Internal Structure: New Possibilities Offered by MMS Tested in a Case Study
    • Rezeau Laurence
    • Belmont Gérard
    • Manuzzo Roberto
    • Aunai Nicolas
    • Dargent Jérémy
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2018, 123 (1), pp.227-241. We explore the structure of the magnetopause using a crossing observed by the Magnetospheric Multiscale (MMS) spacecraft on 16 October 2015. Several methods (minimum variance analysis, BV method, and constant velocity analysis) are first applied to compute the normal to the magnetopause considered as a whole. The different results obtained are not identical, and we show that the whole boundary is not stationary and not planar, so that basic assumptions of these methods are not well satisfied. We then analyze more finely the internal structure for investigating the departures from planarity. Using the basic mathematical definition of what is a one‐dimensional physical problem, we introduce a new single spacecraft method, called LNA (local normal analysis) for determining the varying normal, and we compare the results so obtained with those coming from the multispacecraft minimum directional derivative (MDD) tool developed by Shi et al. (2005). This last method gives the dimensionality of the magnetic variations from multipoint measurements and also allows estimating the direction of the local normal when the variations are locally 1‐D. This study shows that the magnetopause does include approximate one‐dimensional substructures but also two‐ and three‐dimensional structures. It also shows that the dimensionality of the magnetic variations can differ from the variations of other fields so that, at some places, the magnetic field can have a 1‐D structure although all the plasma variations do not verify the properties of a global one‐dimensional problem. A generalization of the MDD tool is proposed. (10.1002/2017JA024526)
    DOI : 10.1002/2017JA024526
  • A turbulent cascade model of bounce averaged gyrokinetics
    • Xu S.
    • Morel Pierre
    • Gürcan Özgür D.
    Physics of Plasmas, American Institute of Physics, 2018, 25 (2), pp.022304. A shell model is derived for the description of nonlinear bounce averaged gyrokinetics, which is one of the simplest kinetic descriptions in magnetized plasmas. In order to validate the numerical implementation, detailed linear evolution of the system is compared with a linear benchmark based on solving the linear dispersion relation numerically. The resulting wave number spectrum, which extends over 34 decades, is shown to have a robust general structure to model parameters, such as dissipation or the ratio of linear energy injection to nonlinear transfer. In a range of wave numbers where the nonlinear transfer term is dominant, a power law spectrum, roughly of the form k&#8722;4 , is observed for the spectral electrostatic potential energy density. The model, being fully kinetic, can be used to obtain the free energy spectra for ion and electron distribution functions as functions of E. This model constitutes the first numerical implementation of a kinetic shell model. (10.1063/1.5020145)
    DOI : 10.1063/1.5020145
  • Numerical study of the influence of surface reaction probabilities on reactive species in an rf atmospheric pressure plasma containing humidity
    • Schröter Sandra
    • Gibson Andrew R.
    • Kushner Mark J.
    • Gans Timo
    • O'Connell Deborah
    Plasma Physics and Controlled Fusion, IOP Publishing, 2018, 60. The quantification and control of reactive species (RS) in atmospheric pressure plasmas (APPs) is of great interest for their technological applications, in particular in biomedicine. Of key importance in simulating the densities of these species are fundamental data on their production and destruction. In particular, data concerning particle-surface reaction probabilities in APPs are scarce, with most of these probabilities measured in low-pressure systems. In this work, the role of surface reaction probabilities, gamma, of reactive neutral species (H, O and OH) on neutral particle densities in a He-H<SUB>2</SUB>O radio-frequency micro APP jet (COST-mu APPJ) are investigated using a global model. It is found that the choice of gamma, particularly for low-mass species having large diffusivities, such as H, can change computed species densities significantly. The importance of gamma even at elevated pressures offers potential for tailoring the RS composition of atmospheric pressure microplasmas by choosing different wall materials or plasma geometries. (10.1088/1361-6587/aa8fe9)
    DOI : 10.1088/1361-6587/aa8fe9