Share

Publications

Publications

2022 | 2021 | 2020 | 2019

Below, by year, are the publications listed in the HAL open archive.

2013

  • Autocalibration Method for Anisotropic Magnetoresistive Sensors Using Offset Coils
    • Mohamadabadi K.
    • Jeandet Alexis
    • Hillion M.
    • Coillot Christophe
    IEEE Sensors Journal, Institute of Electrical and Electronics Engineers, 2013, 13 (2), pp.772-776. In this paper, we present a zero-cost indoor calibration method for anisotropic magnetoresistive (AMR) sensors. The implemented circuit is designed to calibrate AMR sensors using integrated coils. A microcontroller is used to generate an artificial three-dimensional magnetic field by injecting three separate currents into three offset coils. We show the similarity of the results for residual calibration norm by using this method compared with the calibration of the sensor in free Earth's magnetic field. Furthermore, this method does not need any other instruments such as Helmholtz coils or a platform for rotating the sensor. Here the sensor is placed inside a mu-metal box during calibration, and the calibration process is completely autonomous. (10.1109/JSEN.2012.2227595)
    DOI : 10.1109/JSEN.2012.2227595
  • Effects of the surface conductivity and the IMF strength on the dynamics of planetary ions in Mercury's magnetosphere
    • Seki Kanako
    • Terada Naoki
    • Yagi Manabu
    • Delcourt Dominique C.
    • Leblanc François
    • Ogino Tatsuki
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2013, 118 (6), pp.3233-3242. To examine the effects of planetary surface conductivity and the southward IMF strength on ion dynamics, systematic trajectory tracings of Na<sup>+</sup> ions were performed in the electric and magnetic field configurations obtained from magnetohydrodynamics (MHD) simulations of the solar wind-Mercury interaction. Comparison with a previous study, which used an analytical model that rescaled the Earth's magnetosphere and assumed the existence of the distant neutral line (DNL) in Mercury's magnetotail, shows a drastic change in the Na<sup>+</sup> precipitation pattern onto due to the formation of the near-Mercury neutral line (NMNL) in MHD simulations. The Na<sup>+</sup> precipitation band at approximately 30 degrees of latitude (LAT), which was obtained in the previous study, disappeared in the equivalent low-conductivity MHD case due to the NMNL formation, while the NMNL formation causes high-energy Na<sup>+</sup> precipitation in the equatorial region. The change in strength of the southward IMF (sBz) alters the location of the NMNL and the Na<sup>+</sup> precipitation pattern. In the low-conductivity sBz = 5 case, both the equatorial precipitation and the Na<sup>+</sup> band at approximately LAT = 30 are formed. In the high-conductivity sBz = 5 case, magnetospheric convection through the polar regions is suppressed, which results in a region of dense Na<sup>+</sup> near the planet. These results suggest that the precipitation pattern of planetary ions onto Mercury's surface changes significantly with the activity level of Mercury's magnetosphere. It is also suggested that observations of the magnetospheric convection, the distribution of Na<sup>+</sup> ions around the planet, or the precipitation pattern of Na<sup>+</sup> ions onto the planetary surface can provide us information about the surface conductivity. (10.1002/jgra.50181)
    DOI : 10.1002/jgra.50181
  • Microsecond ramp compression of a metallic liner driven by a 5 MA current on the SPHINX machine using a dynamic load current multiplier pulse shaping
    • d'Almeida Thierry
    • Lassalle Francis
    • Morell Alain
    • Grunenwald Julien
    • Zucchini Frédéric
    • Loyen Arnaud
    • Maysonnave Thomas
    • Chuvatin Alexandre S.
    Physics of Plasmas, American Institute of Physics, 2013, 20 (09), pp.092512. SPHINX is a 6 MA, 1-&#956;s Linear Transformer Driver (LTD) operated by the CEA Gramat (France) and primarily used for imploding Z-pinch loads for radiation effects studies. Among the options that are currently being evaluated to improve the generator performances are an upgrade to a 20&#8201;MA, 1-&#956;s LTD machine and various power amplification schemes, including a compact Dynamic Load Current Multiplier (DLCM). A method for performing magnetic ramp compression experiments, without modifying the generator operation scheme, was developed using the DLCM to shape the initial current pulse in order to obtain the desired load current profile. In this paper, we discuss the overall configuration that was selected for these experiments, including the choice of a coaxial cylindrical geometry for the load and its return current electrode. We present both 3-D Magneto-hydrodynamic and 1D Lagrangian hydrodynamic simulations which helped guide the design of the experimental configuration. Initial results obtained over a set of experiments on an aluminium cylindrical liner, ramp-compressed to a peak pressure of 23&#8201;GPa, are presented and analyzed. Details of the electrical and laser Doppler interferometer setups used to monitor and diagnose the ramp compression experiments are provided. In particular, the configuration used to field both homodyne and heterodyne velocimetry diagnostics in the reduced access available within the liner's interior is described. Current profiles measured at various critical locations across the system, particularly the load current, enabled a comprehensive tracking of the current circulation and demonstrate adequate pulse shaping by the DLCM. The liner inner free surface velocity measurements obtained from the heterodyne velocimeter agree with the hydrocode results obtained using the measured load current as the input. An extensive hydrodynamic analysis is carried out to examine information such as pressure and particle velocity history profiles or magnetic diffusion across the liner. The potential of the technique in terms of applications and achievable ramp pressure levels lies in the prospects for improving the DLCM efficiency through the use of a closing switch (currently under development), reducing the load dimensions and optimizing the diagnostics. (10.1063/1.4823720)
    DOI : 10.1063/1.4823720
  • Chlorine atom densities in the (3p<SUP>5</SUP>)<SUP>2</SUP> P<SUP>0</SUP><SUB>1/2</SUB> excited spin-orbit state measured by two-photon absorption laser-induced fluorescence in a chlorine inductively coupled plasma
    • Sirse Nishant
    • Booth Jean-Paul
    • Chabert Pascal
    • Surzhykov A.
    • Indelicato P.
    Journal of Physics D: Applied Physics, IOP Publishing, 2013, 46 (29), pp.295203. Chlorine atom densities in the spinorbit excited state were measured by two-photon absorption laser-induced fluorescence (TALIF) in an inductively coupled plasma discharge in pure Cl2. The atoms were excited by two photons at 235.702 nm to the state and detected by fluorescence to the (4s) 4P5/2 state at 726 nm. The population of this state relative to that in the ground state, was determined from the relative TALIF signal intensity from the two states, combined with new calculations of the two-photon absorption cross-sections. was found to increase continuously with radio-frequency power (50500 W), whereas with Cl2 pressure (590 mTorr) it passes through a maximum at 10 mTorr, reaching ~30% at 500 W. This maximum corresponds to the maximum of electron density in the discharge. Combining this density ratio measurement with previous measurements of the absolute ground state chlorine atom density [1] allows the absolute spin-orbit excited state density to be estimated. A significant fraction of the total chlorine atom density is in this excited state which should be included in plasma chemistry models. (10.1088/0022-3727/46/29/295203)
    DOI : 10.1088/0022-3727/46/29/295203
  • Spatio-temporal evolution of the H -> L back transition
    • Miki K.
    • Diamond P.H.
    • Schmitz L.
    • Mcdonald D. C.
    • Estrada T.
    • Gürcan Özgür D.
    • Tynan G.R.
    Physics of Plasmas, American Institute of Physics, 2013, 20 (6), pp.062304. Since ITER will operate close to threshold and with limited control, the H&#8201;&#8594;&#8201;L back transition is a topic important for machine operations as well as physics. Using a reduced mesoscale model [Miki et al., Phys. Plasmas 19, 092306 (2012)], we investigate ELM-free H&#8201;&#8594;&#8201;L back transition dynamics in order to isolate transport physics effects. Model studies indicate that turbulence spreading is the key process which triggers the back transition. The transition involves a feedback loop linking turbulence and profiles. The I-phase appears during the back transition following a slow power ramp down, while fast ramp-downs reveal a single burst of zonal flow during the back transition. The I-phase nucleates at the pedestal shoulder, as this is the site of the residual turbulence in H-mode. Hysteresis in the profile gradient scale length is characterized by the Nusselt number, where Nu = &#967;i,turb/&#967;i,neo. Relative hysteresis of temperature gradient vs density gradient is sensitive to the pedestal Prandtl number, where Prped = Dped/&#967;i,neo. We expect the H-mode to be somewhat more resilient in density than in temperature. (10.1063/1.4812555)
    DOI : 10.1063/1.4812555
  • In Situ Cassini Spacecraft Observations of Turbulence in Saturn's Magnetosheath
    • Hadid L. Z.
    • Sahraoui Fouad
    • Retinò Alessandro
    • Modolo Ronan
    • Canu Patrick
    • Jackman C. M.
    • Masters A.
    • Dougherty M. K.
    • Gurnett D. A.
    , 2013, 8, pp.EPSC2013-1056. Throughout this work we investigate, the properties of turbulence in the Magnetosheath of Saturn. To do so, we computed Power Spectral Densities (PSD) based on Cassini interplanetary magnetic field data between 2004 and 2007. As a preliminary result, we show the absence of the Kolmogorov scale ~ f-5/3 in the inertial range whereas only the f-1 scale is present.
  • Atmospheric Pressure Townsend Discharges in nitrogen with small admixtures of oxygen: discussion on the origin of the memory effect
    • Naudé Nicolas
    • Bouzidi Mohamed Cherif
    • Dang V.S.
    • Dang van Sung Mussard Marguerite
    • Puechagut Loïc
    • Belinger Antoine
    • Ségur Pierre
    • Gherardi Nicolas
    , 2013.
  • Electrical characteristics of micro-hollow cathode discharges
    • Lazzaroni Claudia
    • Chabert Pascal
    Journal of Physics D: Applied Physics, IOP Publishing, 2013, 46, pp.455203. A cathode sheath model of micro-hollow cathode discharges is proposed to calculate the voltagecurrent characteristics and discuss the physics of the discharge resistance. Three different approaches are compared: (i) a self-consistent model where the electric field is determined self-consistently with the electron flux, (ii) a matrix sheath model where the electric field profile in the sheath is imposed, (iii) a constant electric field model where the electric field in the sheath is assumed to be equal to a constant fraction of the electric field at the cathode. The sheath size is found to decrease with the pressure, the voltage and the secondary emission coefficient. There is a strong effect of the secondary emission coefficient and the pressure on the voltagecurrent characteristics. The discharge resistance is found to be several hundreds of k&#937; and decreases with the discharge current, the pressure and the secondary emission coefficient. A comparison between the matrix sheath model and experiments suggests that both the secondary emission coefficient and the surface area on which the current is collected at the cathode increase with the discharge current. This increase is related to a transition between a discharge confined in the hole at low current and a plasma abruptly expanded on the cathode backside at higher current. (10.1088/0022-3727/46/45/455203)
    DOI : 10.1088/0022-3727/46/45/455203
  • A comparison of bow shock models with Cluster observations during low Alfvén Mach number magnetic clouds
    • Turc Lucile
    • Fontaine Dominique
    • Savoini Philippe
    • Hietala H.
    • Kilpua E. K. J.
    Annales Geophysicae, European Geosciences Union, 2013, 31 (6), pp.1011-019. Magnetic clouds (MCs) are very geoeffective solar wind structures. Their properties in the interplanetary medium have been extensively studied, yet little is known about their characteristics in the Earth's magnetosheath. The Cluster spacecraft offer the opportunity to observe MCs in the magnetosheath, but before MCs reach the magnetosphere, their structure is altered when they interact with the terrestrial bow shock (BS). The physics taking place at the BS strongly depends on ΘBn, the angle between the shock normal and the interplanetary magnetic field. However, in situ observations of the BS during an MC's crossing are seldom available. In order to relate magnetosheath observations to solar wind conditions, we need to rely on a model to determine the shock's position and normal direction. Yet during MCs, the models tend to be less accurate, because the Alfvén Mach number (MA) is often significantly lower than in regular solar wind. On the contrary, the models are generally optimised for high MA conditions. In this study, we compare the predictions of four widely used models available in the literature (Wu et al., 2000; Chapman and Cairns, 2003; Jeřáb et al., 2005; Měrka et al., 2005b) to Cluster's dayside BS crossings observed during five MC events. Our analysis shows that the ΘBn angle is well predicted by all four models. On the other hand, the Jeřáb et al. (2005) model yields the best estimates of the BS position during low MA MCs. The other models locate the BS either too far from or too close to Earth. The results of this paper can be directly used to estimate the BS parameters in all studies of MC interaction with Earth's magnetosphere. (10.5194/angeo-31-1011-2013)
    DOI : 10.5194/angeo-31-1011-2013
  • A study of helium atmospheric-pressure guided streamers for potential biological applications
    • Gazeli Kristacq
    • Noel Cédric
    • Clement Franck
    • Dauge C.
    • Svarnas P.
    • Belmonte Thierry
    Plasma Sources Science and Technology, IOP Publishing, 2013, 22 (2), pp.025020. The origin of differences in the rotational temperatures of various molecules and ions (N-2(+)(B), OH(A) and N-2(C)) is studied in helium atmospheric-pressure guided streamers. The rotational temperature of N-2(+)(B) is room temperature. It is estimated from the emission band of the first negative system at 391.4 nm, and it is governed by the temperature of N-2(X) in the surrounding air. N-2(X) is ionized by direct electron impact in the outer part of the plasma. N-2(+)(B) is deactivated by collisions with N-2 and O-2. The rotational temperature of OH(A), estimated from the OH band at 306.4 nm, is slightly higher than that of N-2(+)(B). OH(A) is excited by electron impact with H2O during the first 100 ns of the applied voltage pulse. Next, OH(A) is produced by electron impact with OH(X) created by the quenching of OH(A) by N-2 and O-2. H2O diffuses deeper than N-2 into the plasma ring and the rotational temperature of OH(A) is slightly higher than that of N-2(+)(B). The rotational temperature of N-2(C), estimated from the emission of the second positive system at 315.9 nm, is governed by its collisions with helium. The gas temperature of helium at the beginning of the pulse is predicted to be several hundred kelvin higher than room temperature. (10.1088/0963-0252/22/2/025020)
    DOI : 10.1088/0963-0252/22/2/025020
  • Generation mechanism of the whistler-mode waves in the plasma sheet prior to magnetic reconnection
    • Wei X.H.
    • Cao J.B.
    • Zhou G.C.
    • Fu H.S.
    • Santolík O.
    • Rème H.
    • Dandouras I.
    • Cornilleau-Wehrlin Nicole
    • Fazakerley A.
    Advances in Space Research, Elsevier, 2013, 52 (1), pp.205-210. The whistler-mode waves and electron temperature anisotropy play a key role prior to and during magnetic reconnection. On August 21, 2002, the Cluster spacecrafts encountered a quasi-collisionless magnetic reconnection event when they crossed the plasma sheet. Prior to the southward turning of magnetospheric magnetic field and high speed ion flow, the whistler-mode waves and positive electron temperature anisotropy are simultaneously observed. Theoretic analysis shows that the electrons with positive temperature anisotropy can excite the whistler-mode waves via cyclotron resonances. Using the data of particles and magnetic field, we estimated the whistler-mode wave growth rate and the ratio of whistler-mode growth rate to wave frequency. They are 0.0016fce (Electron cyclotron frequency) and 0.0086fce, respectively. Therefore the whistler-mode waves can grow quickly in the current sheet. The combined observations of energetic electron beams and waves show that after the southward turning of magnetic field, energetic electrons in the reconnection process are accelerated by the whistler-mode waves. (10.1016/j.asr.2013.02.016)
    DOI : 10.1016/j.asr.2013.02.016
  • Reinterpretation of Slowdown of Solar Wind Mean Velocity in Nonlinear Structures Observed Upstream of Earth's Bow Shock
    • Parks G. K.
    • Lee E.
    • Lin N.
    • Fu S. Y.
    • Mccarthy M.
    • Cao J.B.
    • Hong J.
    • Liu Y.
    • Shi J. K.
    • Goldstein M. L.
    • Canu Patrick
    • Dandouras I.
    • Rème H.
    The Astrophysical Journal Letters, Bristol : IOP Publishing, 2013, 771, pp.L39. Two of the many features associated with nonlinear upstream structures are (1) the solar wind (SW) mean flow slows down and deviates substantially and (2) the temperature of the plasma increases in the structure. In this Letter, we show that the SW beam can be present throughout the entire upstream event maintaining a nearly constant beam velocity and temperature. The decrease of the velocity is due to the appearance of new particles moving in the opposite direction that act against the SW beam and reduce the mean velocity as computed via moments. The new population, which occupies a larger velocity space, also contributes to the second moment, increasing the temperature. The new particles include the reflected SW beam at the bow shock and another population of lower energies, accelerated nearby at the shock or at the boundary of the nonlinear structures. (10.1088/2041-8205/771/2/L39)
    DOI : 10.1088/2041-8205/771/2/L39
  • SPACE RESEARCH IN AFRICA SOME ACHIEVEMENTS FROM 2007 to 2012
    • Amory-Mazaudier Christine
    • Fleury Rolland
    Sun and Geosphere, BBC SWS Regional Network, 2013, 1, pp.ISSN : I819-0839. This article presents the results of a research network Europe Africa established in 1995 after the International Electrojet Equatorial Year (1992-1994). During the last decade, this research network has been involved in two international projects: the International Heliophysical Year (2007-2009) and International Space Weather Initiative (2010-2012).The participation in these international projects increased the number of PhD and multiplied the number of scientific papers. Many scientific results have been obtained. Teaching and working methods have been also developed. We emphasize in this article the last two points.
  • In situ observations of high-Mach number collisionless shocks in space plasmas
    • Masters A.
    • Stawarz L.
    • Fujimoto M.
    • Schwartz S. J.
    • Sergis N.
    • Thomsen M. F.
    • Retinò Alessandro
    • Hasegawa H.
    • Zieger B.
    • Lewis G. R.
    • Coates A. J.
    • Canu Patrick
    • Dougherty M. K.
    Plasma Physics and Controlled Fusion, IOP Publishing, 2013, 55 (12), pp.124035. Shock waves are widespread in collisionless space plasmas throughout the Universe. How particles are accelerated at these shocks has been the subject of much research attention. The dominant source of the high-energy particles that pervade our Galaxy (cosmic rays) is thought to be the high-Mach number collisionless shocks that form around young supernova remnants, but it is unclear how much the lower Mach number collisionless shock waves frequently encountered by spacecraft in Solar System space plasmas can tell us about particle acceleration in the higher Mach number regime. Here we review recent studies of the shock wave that stands in the solar wind in front of the planet Saturn (Saturn's bow shock), based on Cassini spacecraft observations. This review represents a new direction of shock physics research, with the potential to bridge the gap between Solar System and astrophysical shocks. These studies have confirmed that Saturn's bow shock is one of the strongest shocks in the Solar System, and a recent discovery indicates that electron acceleration at high-Mach numbers may occur irrespective of the upstream magnetic field geometry. This is important because astrophysical shocks can often only be studied remotely via emissions associated with accelerated electrons. We discuss possible future directions of this emerging sub-field of collisionless space plasma shock physics. (10.1088/0741-3335/55/12/124035)
    DOI : 10.1088/0741-3335/55/12/124035
  • Interplanetary Nanodust Detection by the Solar Terrestrial Relations Observatory/WAVES Low Frequency Receiver
    • Le Chat G.
    • Zaslavsky A.
    • Meyer-Vernet N.
    • Issautier K.
    • Belheouane S.
    • Pantellini F.
    • Maksimovic M.
    • Zouganelis I.
    • Bale S. D.
    • Kasper J. C.
    Solar Physics, Springer Verlag, 2013, 286 (2), pp.549-559. New measurements using radio and plasma-wave instruments in interplanetary space have shown that nanometer-scale dust, or nanodust, is a significant contributor to the total mass in interplanetary space. Better measurements of nanodust will allow us to determine where it comes from and the extent to which it interacts with the solar wind. When one of these nanodust grains impacts a spacecraft, it creates an expanding plasma cloud, which perturbs the photoelectron currents. This leads to a voltage pulse between the spacecraft body and the antenna. Nanodust has a high charge/mass ratio, and therefore can be accelerated by the interplanetary magnetic field to the speed of the solar wind: significantly faster than the Keplerian orbital speeds of heavier dust. The amplitude of the signal induced by a dust grain grows much more strongly with speed than with mass of the dust particle. As a result, nanodust can produce a strong signal despite its low mass. The WAVES instruments on the twin Solar TErrestrial RElations Observatory spacecraft have observed interplanetary nanodust particles since shortly after their launch in 2006. After describing a new and improved analysis of the last five years of STEREO/WAVES Low Frequency Receiver data, we present a statistical survey of the nanodust characteristics, namely the rise time of the pulse voltage and the flux of nanodust. We show that previous measurements and interplanetary dust models agree with this survey. The temporal variations of the nanodust flux are also discussed. (10.1007/s11207-013-0268-x)
    DOI : 10.1007/s11207-013-0268-x
  • On the reactivity of plasma-treated photo-catalytic TiO<SUB>2</SUB> surfaces for oxidation of C<SUB>2</SUB>H<SUB>2</SUB> and CO
    • Lopatik D.
    • Marinov Daniil
    • Guaitella Olivier
    • Rousseau Antoine
    • Roepcke J.
    Journal of Physics D: Applied Physics, IOP Publishing, 2013, 46, pp.255203. The objective of this study is to understand fundamental aspects of interactions of plasmas with catalytic surfaces. Based on this approach the reactivity of plasma treated and stimulated catalytic surfaces of TiO2 is studied by analysing the oxidation (i) of C2H2 to CO and CO2 and (ii) of CO to CO2. The inner surface of a Pyrex discharge tube is coated with TiO2 films impregnated with TiO2 nanoparticles, which provides a surface area of about 4 m2. In addition to the exposure of the TiO2 surface by low-pressure radio-frequency plasmas using O2, Ar or N2 (f = 13.56 MHz, p = 0.53 mbar, P = 17 W) the surfaces are stimulated by heating and UV radiation treatment. The temporal development of the concentrations of the precursor gases C2H2 or CO and of the reaction products is monitored using quantum cascade laser absorption spectroscopy, which provides multi-component detection in the mid-infrared spectral range. The C2H2 concentration was found to be nearly constant over time after a pre-treatment with Ar or N2 discharges using an initial gas mixture of 1% C2H2 in Ar. However, a strong decay of the concentration of C2H2 is observed for pure O2 plasma pre-treatment. In general, the decay is found to be nearly exponential with time constant in the order of about 10 min. The reactive adsorption of C2H2 molecules on the inner surface of the tube reactor showed a density of about 7.5 × 1012 C2H2 molecules cm&#8722;2. This behaviour demonstrates that the reaction (\rm O_\rm ads \rm C_2 \rm H_2)_\rm TiO_2 produces some adsorbed intermediates, which can be thermally or photo-catalytically oxidized to CO2. In contrast, when 1% CO in Ar is used as an initial gas mixture no adsorption processes on the TiO2 surface could be detected. An effective destruction of CO took part via photo-catalytic oxidation. (10.1088/0022-3727/46/25/255203)
    DOI : 10.1088/0022-3727/46/25/255203
  • Controlled deposition of sulphur-containing semiconductor and dielectric nano-structured films on metals in SF<SUB>6</SUB> ion-ion plasma
    • Rafalskyi D.V.
    • Bredin Jérôme
    • Aanesland Ane
    Journal of Applied Physics, American Institute of Physics, 2013, 114 (21), pp.213303. In the present paper, the deposition processes and formation of films in SF6 ion-ion plasma, with positive and negative ion flows accelerated to the surface, are investigated. The PEGASES (acronym for Plasma Propulsion with Electronegative GASES) source is used as an ion-ion plasma source capable of generating almost ideal ion-ion plasma with negative ion to electron density ratio more than 2500. It is shown that film deposition in SF6 ion-ion plasma is very sensitive to the polarity of the incoming ions. The effect is observed for Cu, W, and Pt materials. The films formed on Cu electrodes during negative and positive ion assisted deposition were analyzed. Scanning electron microscope analysis has shown that both positive and negative ion fluxes influence the copper surface and leads to film formation, but with different structures of the surface: the low-energy positive ion bombardment causes the formation of a nano-pored film transparent for ions, while the negative ion bombardment leads to a continuous smooth insulating film. The transversal size of the pores in the porous film varies in the range 50500&#8201;nm, and further analysis of the film has shown that the film forms a diode together with the substrate preventing positive charge drain, and positive ions are neutralized by passing through the nano-pores. The film obtained with the negative ion bombardment has an insulating surface, but probably with a multi-layer structure: destroying the top surface layer allows to measure similar diode IV-characteristics as for the nano-pored film case. Basing on results, practical conclusions for the probes and electrodes cleaning in ion-ion SF6 plasmas have been made. Different applications are proposed for the discovered features of the controlled deposition from ion-ion plasmas, from Li-sulphur rechargeable batteries manufacturing and nanofluidics issues to the applications for microelectronics, including low-k materials formation. (10.1063/1.4842915)
    DOI : 10.1063/1.4842915
  • Hysteresis effects in the formation of a neutralizing beam plasma at low ion energy
    • Rafalskyi D.V.
    • Aanesland Ane
    EPL - Europhysics Letters, European Physical Society / EDP Sciences / Società Italiana di Fisica / IOP Publishing, 2013, 104 (3), pp.35004. In this paper, the PEGASES II thruster prototype is used as an ion source generating low-energy positive Ar ion beam, extracted without an external neutralizer. The ions are extracted and accelerated from the source using a two-grid system. The extracted positive ion beam current is measured on a large beam target that can be translated along the acceleration axis. The ion beam current shows a stepwise transition from a low-current to a high-current extraction regime with hysteresis. The hysteresis region depends strongly upon the beam target position. Langmuir probe measurements in the plume show high plasma potentials and low plasma densities in the low-current mode, while the plasma potential drops and the density increases in the high-current mode. The ion energy distribution functions of the beam are measured for different regimes of ion extraction. The ion beam extracted in the high-current mode is indicated by the presence of an additional low-energy peak corresponding to ions from an ion-beam plasma created in the downstream chamber, as well as 1020 times higher intensity of the primary ion beam peak. The hysteresis behavior is explained by the formation of a downstream neutralizing beam plasma, that depends on the target position and pressure in agreement with a Paschen-like breakdown by secondary electrons. The obtained results are of high relevance for further development of the PEGASES thruster, as well as for improving existing neutralizer-free concepts of the broad-beam ion sources. (10.1209/0295-5075/104/35004)
    DOI : 10.1209/0295-5075/104/35004
  • Progress on theoretical issues in modelling turbulent transport
    • Kosuga Y.
    • Diamond P.H.
    • Wang L.
    • Gürcan Özgür D.
    • Hahm T.S.
    Nuclear Fusion, IOP Publishing, 2013, 53 (4), pp.043008. We discuss theoretical progress in turbulent transport modelling in tokamaks. In particular, we address issues that the conventional quasilinear type calculation cannot confront, such as (i) the nature of turbulence in the edge-core coupling region of tokamaks (i.e. the so-called no mans land'), and the dynamics of incoming structures coupled to zonal flows, (ii) nonlinear dynamics of zonal flows and (iii) transport by drift wave turbulence with strong waveparticle interaction. A unifying theme of these studies is their formulation in terms of the phase space density correlation evolution. (10.1088/0029-5515/53/4/043008)
    DOI : 10.1088/0029-5515/53/4/043008
  • How the Propagation of Heat-Flux Modulations Triggers ExB Flow Pattern Formation
    • Kosuga Y.
    • Diamond P.H.
    • Gürcan Özgür D.
    Physical Review Letters, American Physical Society, 2013, 110, pp.105002. We propose a novel mechanism to describe E×B flow pattern formation based upon the dynamics of propagation of heat-flux modulations. The E×B flows of interest are staircases, which are quasiregular patterns of strong, localized shear layers and profile corrugations interspersed between regions of avalanching. An analogy of staircase formation to jam formation in traffic flow is used to develop an extended model of heat avalanche dynamics. The extension includes a flux response time, during which the instantaneous heat flux relaxes to the mean heat flux, determined by symmetry constraints. The response time introduced here is the counterpart of the drivers response time in traffic, during which drivers adjust their speed to match the background traffic flow. The finite response time causes the growth of mesoscale temperature perturbations, which evolve to form profile corrugations. The length scale associated with the maximum growth rate scales as &#916;2&#8764;(vthi/&#955;Ti)&#961;i&#8730;&#967;neo&#964;, where &#955;Ti is a typical heat pulse speed, &#967;neo is the neoclassical thermal diffusivity, and &#964; is the response time of the heat flux. The connection between the scale length &#916;2 and the staircase interstep scale is discussed. (10.1103/PhysRevLett.110.105002)
    DOI : 10.1103/PhysRevLett.110.105002
  • Transport of radial heat flux and second sound in fusion plasmas
    • Gürcan Özgür D.
    • Diamond P.H.
    • Garbet X.
    • Berionni Vincent
    • Dif-Pradalier Guilhem
    • Hennequin Pascale
    • Morel Pierre
    • Kosuga Y.
    • Vermare Laure
    Physics of Plasmas, American Institute of Physics, 2013, 20, pp.022307. Simple flux-gradient relations that involve time delay and radial coupling are discussed. Such a formulation leads to a rather simple description of avalanches and may explain breaking of gyroBohm transport scaling. The generalization of the flux-gradient relation (i.e., constitutive relation), which involve both time delay and spatial coupling, is derived from drift-kinetic equation, leading to kinetic definitions of constitutive elements such as the flux of radial heat flux. This allows numerical simulations to compute these cubic quantities directly. The formulation introduced here can be viewed as an extension of turbulence spreading to include the effect of spreading of cross-phase as well as turbulence intensity, combined in such a way to give the flux. The link between turbulence spreading and entropy production is highlighted. An extension of this formulation to general quasi-linear theory for the distribution function in the phase space of radial position and parallel velocity is also discussed. (10.1063/1.4792161)
    DOI : 10.1063/1.4792161
  • Cell death induced on cell cultures and nude mouse skin by non-thermal, nanosecond-pulsed generated plasma
    • Duval Arnaud
    • Marinov Ilya
    • Bousquet Guilhem
    • Gapihan Guillaume
    • Starikovskaia Svetlana
    • Rousseau Antoine
    • Janin Anne
    PLoS ONE, Public Library of Science, 2013, 8 (12), pp.e83001. Non-thermal plasmas are gaseous mixtures of molecules, radicals, and excited species with a small proportion of ions and energetic electrons. Non-thermal plasmas can be generated with any high electro-magnetic field. We studied here the pathological effects, and in particular cell death, induced by nanosecond-pulsed high voltage generated plasmas homogeneously applied on cell cultures and nude mouse skin. In vitro, Jurkat cells and HMEC exhibited apoptosis and necrosis, in dose-dependent manner. In vivo, on nude mouse skin, cell death occurred for doses above 113 J/cm(2) for the epidermis, 281 J/cm(2) for the dermis, and 394 J/cm(2) for the hypodermis. Using electron microscopy, we characterized apoptosis for low doses and necrosis for high doses. We demonstrated that these effects were not related to thermal, photonic or pH variations, and were due to the production of free radicals. The ability of cold plasmas to generate apoptosis on cells in suspension and, without any sensitizer, on precise skin areas, opens new fields of application in dermatology for extracorporeal blood cell treatment and the eradication of superficial skin lesions. (10.1371/journal.pone.0083001)
    DOI : 10.1371/journal.pone.0083001
  • Fine-structure-resolved electron collisions from chlorine atoms in the (3p<SUP>5</SUP>)<SUP>2</SUP>P<SUB>3/2</SUB><SUP>o</SUP> and (3p<SUP>5</SUP>)<SUP>2</SUP>P<SUB>1/2</SUB><SUP>o</SUP> states
    • Wang Yang
    • Zatsarinny Oleg
    • Bartschat Klaus
    • Booth Jean-Paul
    Physical Review A : Atomic, molecular, and optical physics [1990-2015], American Physical Society, 2013, 87, pp.022703. The B-spline R-matrix method is employed to calculate elastic electron scattering from chlorine atoms in the (3p5)2P3/2,1/2o states and electron-induced collisions between these two finestructure levels. The polarizability of the target states is accounted for by including polarized pseudostates in the close-coupling expansion, while relativistic effects are treated at the level of the semirelativistic Breit-Pauli approximation. We find the Ramsauer minimum in the elastic channels at a significantly lower projectile energy (&#8776;0.2 eV) than previous calculations, due to an apparent strong sensitivity of the theoretical predictions on the details of the model, especially the target structure. The present results are relevant to the determination of chlorine atomic densities in Cl2-containing industrial plasma etch reactors. (10.1103/PhysRevA.87.022703)
    DOI : 10.1103/PhysRevA.87.022703
  • Solar wind fluctuations and solar wind activity long-term swing 1963-2012
    • Zerbo J.-L.
    • Amory-Mazaudier Christine
    • Ouattara Frédéric Martial
    , 2013, 1301161.
  • Vibrational relaxation of N2 on catalytic surfaces studied by infrared titration with time resolved Quantum Cascade Laser diagnostics
    • Marinov Daniil
    • Guaitella Olivier
    • Lopatik D.
    • Hübner M.
    • Ionikh Y.
    • Roepcke J.
    • Rousseau Antoine
    , 2013.